Involvement of TGF-β1 Signaling in Cardiomyocyte Differentiation from P19CL6 Cells

  • Lim, Joong-Yeon (Division of Intractable Diseases, Center for Biomedical Sciences, National Institute of Health) ;
  • Kim, Won Ho (Division of Intractable Diseases, Center for Biomedical Sciences, National Institute of Health) ;
  • Kim, Joon (Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University) ;
  • Park, Sang Ick (Division of Intractable Diseases, Center for Biomedical Sciences, National Institute of Health)
  • Received : 2007.03.13
  • Accepted : 2007.06.26
  • Published : 2007.12.31

Abstract

Stem cell-based therapy is being considered as an alternative treatment for cardiomyopathy. Hence understanding the basic molecular mechanisms of cardiomyocyte differentiation is important. Besides BMP or Wnt family proteins, $TGF-{\beta}$ family members are thought to play a role in cardiac development and differentiation. Although $TGF-{\beta}$ has been reported to induce cardiac differentiation in embryonic stem cells, the differential role of $TGF-{\beta}$ isoforms has not been elucidated. In this study, employing the DMSO-induced cardiomyocyte differentiation system using P19CL6 mouse embryonic teratocarcinoma stem cells, we investigated the $TGF-{\beta}$-induced signaling pathway in cardiomyocyte differentiation. $TGF-{\beta}1$, but not the other two isoforms of $TGF-{\beta}$, was induced at the mRNA and protein level at an early stage of differentiation, and Smad2 phosphorylation increased in parallel with $TGF-{\beta}1$ induction. Inhibition of $TGF-{\beta}1$ activity with $TGF-{\beta}1$-specific neutralizing antibody reduced cell cycle arrest as well as expression of the CDK inhibitor $p21^{WAF1}$. The antibody also inhibited induction of the cardiac transcription factor Nkx2.5. Taken together, these results suggest that $TGF-{\beta}1$ is involved in cardiomyocyte differentiation by regulating cell cycle progression and cardiac gene expression in an autocrine or paracrine manner.

Keywords

Acknowledgement

Supported by : Korea National Institute of Health

References

  1. Azhar, M., Schultz, J. E. J., Grupp, I., Dorn, G. W., Meneton, P., et al. (2003) Transforming growth factor beta in cardiovascular development and function. Cytokine Growth Factor Rev. 14, 391-407 https://doi.org/10.1016/S1359-6101(03)00044-3
  2. Behfar, A., Zingman, L. V., Hodgson, D. M., Rauzier, J. M., Kane, G. C., et al. (2002) Stem cell differentiation requires a paracrine pathway in the heart. FASEB J. 16, 1558-1566 https://doi.org/10.1096/fj.02-0072com
  3. Brand, T. and Schneider, M. D. (1995) The TGF-beta superfamily in myocardium - ligands, receptors, transduction, and function. J. Mol. Cell. Cardiol. 27, 5-18 https://doi.org/10.1016/S0022-2828(08)80003-X
  4. Bujak, M. and Frangogiannis, N. G. (2006) The role of TGFbeta signaling in myocardial infarction and cardiac remodeling. Cardiovasc. Res. 74, 184-195
  5. Deten, A., Holzl, A., Leicht, M., Barth, W., and Zimmer, H. G. (2001) Changes in extracellular matrix and in transforming growth factor beta isoforms after coronary artery ligation in rats. J. Mol. Cell. Cardiol. 33, 1191-1207 https://doi.org/10.1006/jmcc.2001.1383
  6. Dunker, N. and Krieglstein, K. (2000) Targeted mutations of transforming growth factor-beta genes reveal important roles in mouse development and adult homeostasis. Eur. J. Biochem. 267, 6982-6988 https://doi.org/10.1046/j.1432-1327.2000.01825.x
  7. Frith-Terhune, A., Koh, K. N., Jin, W. J., Chung, K. B., and Park, S. K. (1998) Programmed changes of cell cycle regulators by serum deprivation regardless of skeletal myocyte differentiation. Mol. Cells 8, 637-646
  8. HabaraOhkubo, A. (1996) Differentiation of beating cardiac muscle cells from a derivative of P19 embryonal carcinoma cells. Cell Struct. Funct. 21, 101-110 https://doi.org/10.1247/csf.21.101
  9. Hidai, C., Masako, O., Ikeda, H., Nagashima, H., Matsuoka, R., et al. (2003) FGF-1 enhanced cardiogenesis in differentiating embryonal carcinoma cell cultures, which was opposite to the effect of FGF-2. J. Mol. Cell. Cardiol. 35, 421-425 https://doi.org/10.1016/S0022-2828(03)00019-1
  10. Kulkarni, A. B., Geiser, A., Francis, N., Flanders, K. C., Roberts, A. B., et al. (1993) Transforming growth factor-beta-1 null mutation in mice causes excessive inflammatory response and early death. Clin. Res. 41, A213
  11. Kumar, D. and Sun, B. M. (2005) Transforming growth factorbeta 2 enhances differentiation of cardiac myocytes from embryonic stem cells. Biochem. Biophys. Res. Commun. 332, 135-141 https://doi.org/10.1016/j.bbrc.2005.04.098
  12. Letterio, J. J., Geiser, A. G., Kulkarni, A. B., Roche, N. S., Sporn, M. B., et al. (1994) Maternal rescue of transforming growth factor-beta-1 null mice. Science 264, 1936-1938 https://doi.org/10.1126/science.8009224
  13. Li, T. S., Hayashi, M., Ito, H., Furutani, A., Murata, T., et al. (2005) Regeneration of infarcted myocardium by intramyocardial implantation of ex vivo transforming growth factor-betapreprogrammed bone marrow stem cells. Circulation 111, 2438-2445 https://doi.org/10.1161/01.CIR.0000167553.49133.81
  14. Lim, J. Y., Park, S. J., Hwang, H. Y., Park, E. J., Nam, J. H., et al. (2005) TGF-beta 1 induces cardiac hypertrophic responses via PKC-dependent ATF-2 activation. J. Mol. Cell. Cardiol. 39, 627-636 https://doi.org/10.1016/j.yjmcc.2005.06.016
  15. Lopes, S. M. C. D., Carvalho, R. L. C., van den Driesche, S., Goumans, M. J., ten Dijke, P., et al. (2003) Distribution of phosphorylated Smad2 identifies target tissues of TGF beta ligands in mouse development. Gene Expr. Patterns 3, 355- 360 https://doi.org/10.1016/S1567-133X(03)00029-2
  16. Naito, A. T., Akazawa, H., Takano, H., Minamino, T., Nagai, T., et al. (2005) Phosphatidylinositol 3-kinase-Akt pathway plays a critical role in early cardiomyogenesis by regulating canonical Wnt signaling. Circ. Res. 97, 144-151 https://doi.org/10.1161/01.RES.0000175241.92285.f8
  17. Naito, A. T., Tominaga, A., Oyamada, M., Oyamada, Y., Shiraishi, I., et al. (2003) Early stage-specific inhibitions of cardiomyocyte differentiation and expression of Csx/Nkx-2.5 and GATA-4 by phosphatidylinositol 3-kinase inhibitor LY294002. Exp. Cell Res. 291, 56-69 https://doi.org/10.1016/S0014-4827(03)00378-1
  18. Parker, S. B., Eichele, G., Zhang, P., Rawls, A., Sands, A. T., et al. (1995) p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 267, 1024- 1027 https://doi.org/10.1126/science.7863329
  19. Pelton, R. W., Saxena, B., Jones, M., Moses, H. L., and Gold, L. I. (1991) Immunohistochemical localization of TGF-beta-1, TGF-beta-2, and TGF-beta-3 in the mouse embryo - Expression patterns suggest multiple roles during embryonic development. J. Cell Biol. 115, 1091-1105 https://doi.org/10.1083/jcb.115.4.1091
  20. Sanford, L. P., Ormsby, I., GittenbergerdeGroot, A. C., Sariola, H., Friedman, R., et al. (1997) TGF beta 2 knockout mice have multiple developmental defects that are nonoverlapping with other TGF beta knockout phenotypes. Development 124, 2659-2670
  21. Schiller, M., Javelaud, D., and Mauviel, A. (2004) TGF-betainduced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J. Dermatol. Sci. 35, 83-92 https://doi.org/10.1016/j.jdermsci.2003.12.006
  22. Slager, H. G., Vaninzen, W., Freund, E., Vandeneijndenvanraaij, A. J. M., and Mummery, C. L. (1993). Transforming growth factor-beta in the early mouse embryo - Implications for the regulation of muscle formation and implantation. Dev. Genet. 14, 212-224 https://doi.org/10.1002/dvg.1020140308
  23. Woo, J. H. and Kim, H. S. (2006) Phosphorylation of eukaryotic elongation factor 2 can be regulated by phosphoinositide 3- kinase in the early stages of myoblast differentiation. Mol. Cells 21, 294-301
  24. Zeineddine, D., Papadimou, E., Chebli, K., Gineste, M., Liu, J., et al. (2006) Oct-3/4 dose dependently regulates specification of embryonic stem cells toward a cardiac lineage and early heart development. Dev. Cell 11, 535-546 https://doi.org/10.1016/j.devcel.2006.07.013