• Title/Summary/Keyword: cavity flow

Search Result 900, Processing Time 0.033 seconds

Diagonalized Approximate Factorization Method for 3D Incompressible Viscous Flows (대각행렬화된 근사 인수분해 기법을 이용한 3차원 비압축성 점성 흐름 해석)

  • Paik, Joongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.293-303
    • /
    • 2011
  • An efficient diagonalized approximate factorization algorithm (DAF) is developed for the solution of three-dimensional incompressible viscous flows. The pressure-based, artificial compressibility (AC) method is used for calculating steady incompressible Navier-Stokes equations. The AC form of the governing equations is discretized in space using a second-order-accurate finite volume method. The present DAF method is applied to derive a second-order accurate splitting of the discrete system of equations. The primary objective of this study is to investigate the computational efficiency of the present DAF method. The solutions of the DAF method are evaluated relative to those of well-known four-stage Runge-Kutta (RK4) method for fully developed and developing laminar flows in curved square ducts and a laminar flow in a cavity. While converged solutions obtained by DAF and RK4 methods on the same computational meshes are essentially identical because of employing the same discrete schemes in space, both algorithms shows significant discrepancy in the computing efficiency. The results reveal that the DAF method requires substantially at least two times less computational time than RK4 to solve all applied flow fields. The increase in computational efficiency of the DAF methods is achieved with no increase in computational resources and coding complexity.

THE EFFECTS OF CHEMORADIATION THERAPY FOR NEUROBLASTOMA ON DENTAL CARIES ACTIVITY (신경모세포종의 화학 및 방사선요법이 치아우식활성도에 미치는 영향)

  • Lee, Ji-Hyun;Park, Ki-Tae;Sung, Ki-Woong;Kim, Ji-Yeon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.37 no.3
    • /
    • pp.352-358
    • /
    • 2010
  • Chemotherapy or radiotherapy used for the treatment of pediatric cancer may have many adverse effects on the oral cavity. Oral mucositis, reduced salivary flow, oral infection, hypodontia, microdontia, arrested root development, and enamel hypoplasia are common oral complications. The aim of this study is to evaluate the effects of cancer therapy on dental caries activities. The children who had been treated for neuroblastoma in the department of pediatrics, Samsung Medical Center, were included and healthy children served as controls. The salivary flow rate, salivary buffering capacity, and Streptococcus mutans counts of both groups were evaluated using Dentocult$^{(R)}$ SM and Dentobuff$^{(R)}$ Strip. The dental caries activity related to the age at the start of treatment and the time elapsed since treatment completion were also evaluated. As a result, neuroblastoma patients had significantly lower salivary flow rate than the controls, while there were no significant differences between two groups as for salivary buffering capacity and Streptococcus mutans counts. The dental caries activities related to the age at the start of treatment and the time elapsed since treatment completion were not significantly different.

A Study on the Model Test for Pneumatic Mine-Filling (공압식 갱내충전을 위한 모형실험 연구)

  • Yang, In-Jae;Shin, Dong-Choon;Yoon, Byung-Sik;Mok, Jin-Ho;Kim, Hak-Sung;Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.24 no.6
    • /
    • pp.449-463
    • /
    • 2014
  • There are many case studies and application cases in abandoned mines for hydraulic filling method filled by slurry or paste form, but research on the pneumatic filling is not applied in Korea. The damage of steel pipe is occurred by wear due to the flow of filling material in the bent area of steel pipe in traditional pneumatic filling method. In this study, the new pneumatic filling method was developed using a newly devised improved nozzle to improve the above problem. The model test for mine filling was performed in the laboratory for the simulated accessible or inaccessible mine cavities, and the filling efficiency by the results obtained from the test was calculated. The filling efficiency was analyzed from the variation of outlet angle, feed rate and grain size of sand in model test of simulated accessible mine cavity. The superiority of improved pneumatic filling method was proved through the analysis of filling efficiency by the results obtained from each model tests of gravitational, traditional, and improved filling method in simulated inaccessible mine cavity.

Development and performance of inorganic thixotropic backfill for shield TBM tail voids (무기질계 가소성 TBM 뒤채움재 개발 및 성능)

  • Lee, Seongwoo;Park, Jinseong;Ryu, Yongsun;Choi, Byounghoon;Jung, Hyuksang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.3
    • /
    • pp.263-278
    • /
    • 2022
  • This paper contains experimental study for the development and performance of TBM backfill material with thixotropic properties. The LW backfill material is widely applied to fill the cavity on the back side of the shield TBM excavation, but has disadvantages such as settlement caused by strength reduction, material separation by groundwater, and reduced plasticity. In this paper, laboratory tests and a model test were conducted to assess the performance of inorganic thixotropic backfill material proposed to improve these problems. The results of laboratory tests show that 1 hr-uniaxial compressive strength of ITB was 12 times higher than LW, and the rate of bleeding of 20 hr was 8.3 times lower, and the result of flow table test was more than 27 times higher. This result indicated that the inorganic thixotropic backfill material has superior properties to LW backfill in terms of strength reduction, material separation, and thixotropy. In the model experiment, a model injection device tester was manufactured and the injection performance and filling rate were verified. When material was injected in the water, it was visually checked whether material separation occurred, and it was confirmed that the filling rate was 96% or more. Comparison results with the test of LW and ITB materials was concluded that ITB can reduce the material separation by groundwater and the occurrence of tunnel cavity.

Synthesis of Fully Dehydrated Partially Cs+-exchanged Zeolite Y (FAU, Si/Al = 1.56), |Cs45Na30|[Si117Al75O384]-FAU and Its Single-crystal Structure

  • Seo, Sung-Man;Kim, Ghyung-Hwa;Lee, Seok-Hee;Bae, Jun-Seok;Lim, Woo-Taik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1285-1292
    • /
    • 2009
  • Large single crystals of zeolite, |$Na_{75}$|[$Si_{117}Al_{75}O_{384}$]-FAU (Na-Y, Si/Al = 1.56), were synthesized from gels with composition of 3.58Si$O_2$ : 2.08NaAl$O_2$ : 7.59NaOH : 455$H_2$O : 5.06TEA : 2.23TCl. One of these, a colorless single-crystal was ion exchanged by allowing aqueous 0.02 M CsOH to flow past the crystal at 293 K for 3 days, followed by dehydration at 673 K and 1 ${\times}\;10^{-6}$ Torr for 2 days. The crystal structure of fully dehydrated partially $Cs^+$-exchanged zeolite Y, |$Cs_{45}Na_{30}$|[$Si_{117}Al_{75}O_{384}$]-FAU per unit cell (a = 24.9080(10) $\AA$) was determined by single-crystal X-ray diffraction technique in the cubic space group Fd $\overline{3}$ m at 294(1) K. The structure was refined using all intensities to the final error indices (using only the 877 reflections with $F_o\;>\;4{\sigma}(F_o))\;R_1$ = 0.0966 (Based on F) and $R_2\;=\;0.2641\;(Based\;on\;F^2$). About forty-five $Cs^+$ ions per unit cell are found at six different crystallographic sites. The 2 $Cs^+$ ions occupied at site I, at the centers of double 6-ring (D6Rs, Cs-O = 2.774(10) $\AA$ and O-Cs-O = 88.9(3) and 91.1(3)$^o$). Two $Cs^+$ ions are found at site I’ in the sodalite cavity; the $Cs^+$ ions were recessed 2.05 $\AA$ into the sodalite cavity from their 3-oxygen plane (Cs-O = 3.05(3) $\AA$ and O-Cs-O = 77.4(13)$^o$). Site-II’ positions (opposite single 6-rings in the sodalite cage) are occupied by 7 $Cs^+$ ions, each of which extends 2.04 $\AA$ into the sodalite cage from its 3-oxygen plane (Cs-O = 3.067(11) $\AA$ and O-Cs-O = 80.1(3)$^o$). The 26 $Cs^+$ ions are nearly three-quarters filled at site II in the supercage, being recessed 2.34 $\AA$ into the supercage (Cs-O = 3.273(8) $\AA$ and O-Cs-O = 74.3(3)$^o$). The 4 $Cs^+$ ions are found at site III deep in the supercage (Cs-O = 3.321(19) and 3.08(3) $\AA$), and 4 $Cs^+$ ions at another site III’ (Cs-O = 2.87(4) and 3.38(4) $\AA$). About 30 $Na^+$ ions per unit cell are found at one crystallographic site; The $Na^+$ ions are located at site I’ in the sodalite cavity opposite double 6-rings (Na-O = 2.578(11) $\AA$ and O-Na-O = 97.8(4)$^o$).

Two Crystal Structures of Dehydrated $Ag^+$ and $Rb^+$ Exchanged Zeolite A, $Ag^{12-x}Rb_{x}-A$, x = 2 and 3 ($Ag^+$ 이온과 $Rb^+$ 이온으로 치환된 제올라이트 A ($Ag^{12-x}Rb_{x}-A$, x = 2 및 3) 를 탈수한 결정구조)

  • Yang Kim;Seong Hwan Song;Duk Soo Kim;Young Wook Han;Dong Kyu Park
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.18-24
    • /
    • 1989
  • Two crystal structures of dehydrated $Ag^+$ and $Rb^+$ exchanged zeolite A, stoichiometries of $Ag_{9}Rb_{3}-A$ (a = 12.278(2)${\AA}$) and $Ag_{10}Rb_{2}-A$ (a = 12.286(2)${\AA}$) per unit cell, have been determined by single crystal x-ray diffraction techniques. Their structures were solved and refined in the cubic space group Pm3m at 21(1)$^{\circ}$C. The crystals of $Ag_{10}Rb_{2}-A$ and $Ag_{10}Rb_{2}-A$ were prepared by flow methods using exchanged solution in which mole ratios of AgNO$_3$ and RbNO$_3$ were 1:5 and 1:50, respectively, with the total concentration of 0.05 M. The structures of the dehydrated $Ag_{9}Rb_{3}-A$ and the $Ag_{10}Rb_{2}-A$ were refined to the final error indices, $R_1$ = 0.064 and $R_2$ = 0.060 with 291 reflections, and $R_1$ = 0.063 and $R_2$ = 0.080 with 416 reflections respectively, for which I >3${\sigma}$(I). In both structures, one reduced silver atom per unit cell was found inside the sodalite cavity. It may be present as a hexasilver cluster in 1/6 of the sodalite units or as an isolated Ag atom coordinated to 4 $Ag^+$ ions in each sodalite unit to give $(Ag_5)^{4+}$, symmetry 4 mm. In the structure of dehydrated $Ag_{9}Rb_{3}-A$, 8 $Ag^+$ ions lie on the threefold axis and each is nearly at the center of the 8-rings at the sites of $D_{4h}$ symmetry. In the structure of dehydrated $Ag_{10}Rb_{2}-A$, two crystallographically different eight 6-ring $Ag^+$ ions were found; $7Ag^+$ ions in the (111) planes of their O(3) framework oxygens and one $Ag^+$ ion inside of sodalite cavity. Two crystallographically different 8-ring cations were also found; two $Rb^+$ ions at the centers of the 8-oxygen rings and one $Ag^+$ ion into the large cavity. Both structures indicate that $Rb^+$ ions prefer to occupy the 8-ring sites, while $Ag^+$ ions prefer to occupy the 6-ring sites.

  • PDF

Traumatic Rupture of the Subcutaneous Bypass Vascular Graft - A case report - (피하 우회 인조혈관의 외상성 파열 1례)

  • Lee, Jung Eun;Jang, In-Seok;Yang, Jun Ho;Kim, Sung-Hwan;Kim, Jong Woo;Choi, Jun Young;Rhie, Sang Ho
    • Journal of Trauma and Injury
    • /
    • v.18 no.2
    • /
    • pp.172-174
    • /
    • 2005
  • Trauma of the vascular structure is not poplular event. In obstructive atherosclerotic vascular disease, we sometimes have needed bypass surgery. The long length subcutaneous prosthetic vascular graft are vulnerable to injury. But prosthetic vessel rupture after trauma has been rare report. A 68-year-old man was referred to Department of Emergency of the Gyeongsang National University Hospital. After he had had a blunt trauma, he found a newly appearing pulsating mass of 10 cm diameter on his right chest wall. The lesion had a turbulent blood flow in the cavity of the mass by ultrasonographic finding. The lesion was a rupture of superficial prosthetic vascular graft under the skin.

Wind induced internal pressure overshoot in buildings with opening

  • Guha, T.K.;Sharma, R.N.;Richards, P.J.
    • Wind and Structures
    • /
    • v.16 no.1
    • /
    • pp.1-23
    • /
    • 2013
  • The wind-induced transient response of internal pressure following the creation of a sudden dominant opening during the occurrence of high external pressure, in low-rise residential and industrial buildings was numerically investigated. The values of the ill-defined parameters namely the flow contraction coefficient, loss coefficient and the effective slug length were calibrated by matching the analytical response with the computational fluid dynamics predictions. The effect of a sudden i.e., "instantaneously created" windward opening in the Texas Technical University (TTU) test building envelope was studied for two different envelope flexibility-leakage combinations namely: (1) a quasi-statically flexible and non-porous envelope and (2) a quasi-statically flexible and porous envelope. The responses forced by creating the openings at different time leads/lags with respect to the occurrence of the peak external pressure showed that for cases where the openings are created in close temporal proximity to the peak pressure, the transient overshoot values of internal pressure could be higher than the peak values of internal pressure in the pre-sequent or subsequent resonant response. In addition, the influence of time taken for opening creation on the level of overshoot was also investigated for the TTU building for the two different envelope characteristics. Non-dimensional overshoot factors are presented for a variety of cavity volume-opening area combinations for (1) buildings with rigid/quasi-statically flexible non-porous envelope, and (2) buildings with rigid/quasi-statically flexible and porous envelope (representing most low rise residential and industrial buildings). While the factors appear slightly on the high side due to conservative assumptions made in the analysis, a careful consideration regarding the implication of the timing and magnitude of such overshoots during strong gusts, in relation to the steady state internal pressure response in cyclonic regions, is warranted.

Deformation Analysis Considering Thermal Expansion of Injection Mold (사출금형의 열팽창을 고려한 변형 분석)

  • Kim, Jun Hyung;Yi, Dae-Eun;Jang, Jeong Hui;Lee, Min Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.893-899
    • /
    • 2015
  • In the design of injection molds, the temperature distribution and deformation of the mold is one of the most important parameters that affect the flow characteristics, flash generation, and surface appearance, etc. Plastic injection analyses have been carried out to predict the temperature distribution of the mold and the pressure distribution on the cavity surface. As the input loads, we transfer the temperature and pressure results to the structural analysis. We compare the structural analysis results with the thermal expansion effect using the actual flash and step size of a smartphone cover part. To reduce the flash problem, we proposed a new mold design, and verified the results by performing simulations.

Residual stresses and viscoelastic deformation of an injection molded automotive part

  • Kim, Sung-Ho;Kim, Chae-Hwan;Oh, Hwa-Jin;Choi, Chi-Hoon;Kim, Byoung-Yoon;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.183-190
    • /
    • 2007
  • Injection molding is one of the most common operations in polymer processing. Good quality products are usually obtained and major post-processing treatment is not required. However, residual stresses which exist in plastic parts affect the final shape and mechanical properties after ejection. Residual stresses are caused by polymer melt flow, pressure distribution, non-uniform temperature field, and density distribution. Residual stresses are predicted in this study by numerical methods using commercially available softwares, $Hypermesh^{TM},\;Moldflow^{TM}\;and\;ABAQUS^{TM}$. Cavity filling, packing, and cooling stages are simulated to predict residual stress field right after ejection by assuming an isotropic elastic solid. Thermo-viscoelastic stress analysis is carried out to predict deformation and residual stress distribution after annealing of the part. Residual stresses are measured by the hole drilling method because the automotive part selected in this study has a complex shape. Residual stress distribution predicted by the thermal stress analysis is compared with the measurement results obtained by the hole drilling method. The molded specimen has residual stress distribution in tension, compression, and tension from the surface to the center of the part. Viscoelastic deformation of the part is predicted during annealing and the deformed geometry is compared with that measured by a three dimensional scanner. The viscoelastic stress analysis with a thermal cycle will enable us to predict long term behavior of the injection molded polymeric parts.