• Title/Summary/Keyword: cation exchange membrane

Search Result 133, Processing Time 0.02 seconds

Preparation of Anion Exchange Membranes for Electrodialysis by Impregnating Porous Polyethylene Films with Crosslinked Poly(vinylbenzyl ammonium chloride)s (다공성 폴리에틸렌 필름에 가교된 poly(vinylbenzyl ammonium chloride)를 충진한 전기투석용 음이온 교환 복합막의 제조)

  • Kim, Jeong-Hoon;Lee, Jung-Soo;Yoo, Min-Chul;Chang, Bong-Jun;Kang, Ho;Lee, Soo-Bok
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.138-145
    • /
    • 2008
  • A series of anion exchange composite membranes were prepared and characterized for electro-dialysis process used in the removal of toxic anion and cation polutants in groundwater or wastewater. The membranes were prepared as follows; first, porous poly(ethylene) (PE) substrates were fully impregnated with monomer mixtures with various ratio of vinylbenzylchloride (VBC), divinylbenzene (DVB) and ${\alpha},\;{\alpha}$-azobis(isobutyronitrile) (AIBN). Second, they were thermally polymerized to yield crosslinked poly(VBC-DVB)/PE composite membranes. Finally, the membranes were treated in trimethylamine (TMA)/acetone to give $-N^+(CH_3)_3$-containing poly(VBC-DVB)/PE membranes. The basic membrane properties such as ion exchange capacity (IEC), electric resistance and water content of the resulting membranes were measured as a function of VBC/DVB and TMA/Acetone content. As a result, the composite membranes showed lower electric resistance, lower water content and higher IEC than commercial anion exchange membranes (AMX, Astom) due to thin PE substrates, indicating that the composite membranes could be successfully applied to the electrodialysis for water treatment.

Application of Capacitive Deionization Packed Ion Exchange Resins in Two Flow Channels (두 가지 유로 형태에 따라 이온교환수지를 채운 축전식 탈염기술)

  • Lee, Dong-Ju;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2015
  • To desalinate the aqueous solutions with high salt concentration using the capacitive deionization technology, two resin/membrane capacitive deionization(RMCDI) cells were fabricated by filling mixed ion exchange resins in two different flow channels (spacer and spiral type). The salt removal efficiency of the spacer- and spiral-RMCDI was 77.21 and 99.94%, respectively. Many ions were significantly removed in a spiral RMCDI cell because the feed solution could be more evenly contacted with the ion exchange resins filled on the spiral type flow channel. As the result of the changes of pH and accumulative charges, it was observed that Faradaic reaction was diminished for a spiral RMCDI cell filled by the mixture of cation and anion exchange resins. Therefore, the desalination of the aqueous solutions with high salt concentration by the capacitive deionization technology was proven. In addition, further studies on the optimization of the mixing ratio with ion exchange resins and the introduction of the regeneration process generally occurred in the continuous electrodeionization (CEDI) technology are required to improve the RMCDI technology.

Screening and Purification of an Antimicrobial Peptide from the Gill of the Manila Clam Ruditapes philippinarum (바지락(Ruditapes philippinarum) 아가미로부터 항균 펩타이드의 탐색 및 정제)

  • Seo, Jung-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.2
    • /
    • pp.137-145
    • /
    • 2016
  • This study screened the biological activity of an acidified gill extract of the Manila clam Ruditapes philippinarum including antimicrobial, hemolytic, membrane permeabilization, and DNA-binding activity, and purified the antimicrobial material. The acidified gill extract showed potent antimicrobial activity against Bacillus subtilis and Escherichia coli without significant hemolytic activity, but showed no membrane permeabilization or DNA-binding ability. An antimicrobial material was purified from the acidified gill extract using C18 reversed-phase and cation-exchange high-performance liquid chromatography (HPLC). Treatment of the purified material with trypsin completely abolished all of the antibacterial activity against Bacillus subtilis, suggesting that the purified material is a proteinaceous antibiotic. The molecular weight of the purified material was 2571.9 Da, but no primary structural information was obtained due to N-terminal blocking. A future study should confirm the primary structure. Our results suggest that the Manila clam gill contains proteinaceous antibiotics that have a role in first-line defense. This information could be used to better understand the Manila clam innate immune system.

Electrochemical Properties of Porous Carbon Electrode as a Function of Internal Electrolyte Concentration (전극 내부의 전해질 농도 변화에 따른 다공성 탄소전극의 전기화학적 특성)

  • Park, Byeong-Hee;Choi, Jae-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.700-704
    • /
    • 2009
  • The electrochemical properties of porous carbon electrodes as a function of their internal electrolyte concentration were investigated. Cyclic voltammetry, chronoamperometry, and impedance spectroscopic analysis were conducted for carbon electrodes equilibrated with 0.01, 0.05, 0.1, and 0.5 M KCl solution and covered with a cation-exchange membrane. The specific capacitance of the electrodes increased as the internal electrolyte concentration increased, due to a decrease in charging resistance. Experimental results indicated that the salt removal efficiency of the membrane capacitive deionization process could be enhanced by increasing the internal electrolyte concentration, even for an influent with a low salt concentration.

Purification and Characterization of Alcohol Dehydrogenase from Acetobacter sp. KM (Acetobater sp.KM Alcohol Dehydrogenase의 분리 및 특성)

  • 전홍성;차영주
    • KSBB Journal
    • /
    • v.10 no.1
    • /
    • pp.30-37
    • /
    • 1995
  • Membrane-bound alcohol dehydrogenase(ADH) was purified to homogeneity from the acetic acid producing bacteria, Acetobacter sp. KM. The enzyme was solubilized and extracted with Triton X-100 and purified using the Mono-Q ion exchange chromatography and Superose 12 gel filtration chromatography. The enzyme was purified to 12-fold with a yield of 30%. The molecular weight of the purified enzyme was to be 335 KDa. SDS-PAGE of the enzyme showed two subunits with molecular weights of 79 KDa and 49 KDa. It indicated that the enzyme consisted of three subunits of the 79 KDa and two subunits of the 49 KDa. The purified .ADH preferentially oxidized straight chain aliphatic alcohol except methanol. Formaldehyde, acetaldehyde and glutaraldehyde were also oxidized. The apparent Km for ethanol was 1.04 mM and the optimum pH and temperature were 5.0∼6.0 and 32$^{\circ}C$, respectively. V2O5 and divalent cation such as ZnCl2 and NiCl2 inhibited enzymatic activity.

  • PDF

The Characteristics of ElectroKinetic Remediation on Unsaturated Soil with Treatment Time (정화기간에 따른 불포화 자연토의 동전기 정화 특성)

  • Kim, Byung-Il;Kim, Jong-Yun;Lee, Jung-Chul;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.890-896
    • /
    • 2004
  • This study is intended as an investigation of the EK remediation characteristics of natural soil with treatment time under unsaturated conditions. EK tests are performed under the voltage gradient of 1V/cm, the degree of saturation of 82.8%, and the installing of cation exchange membrane. It was found from the results that the acid front is initially transported at 0.75cm/day and then continuously degreased until the transport velocity of the acid front is balanced to the velocity of the base front. The residual lead concentration indicated the maximum value at the treatment time of lOdays, then the increasing of treatment time largely decreases the concentration within the sample though electromigration than electroosmosis.

  • PDF

Separation Characteristics of Whey Protein by High Performance Membrane Chromatography (고성능 막 크로마토그래피에 의한 유청 단백질의 분리특성)

  • 홍승범;노경호
    • KSBB Journal
    • /
    • v.16 no.6
    • /
    • pp.533-537
    • /
    • 2001
  • ${\alpha}$-lactalbumin and ${\beta}$-lactoglobulin in whey proteins were separated by high performance membrane chromatography (HPMC). The separation mechanism involved anion-exchange, and the stationary phase was anion CIM (Convective Interaction Media) DEAE, QA disk and cation exchanger SO$_3$(16${\times}$3 mm). Two types of mobile phase were used, buffer A (20 mM Tris-HCI, pH 7.3) and buffer B(buffer A + 1 M NaCl), As the amount of NaCl dissolved in buffer linearly increased, which enabled a gradient elution mode. The optimum mobile phase and operating condition (Buffer A/Buffer B = 100/0 - 30/70 vol%, gradient time 1 min, 30/70 - 10/90 vol.%, gradient time 2 min) were experimentally determined. In this experimental condition, ${\alpha}$-lacta1bumin, ${\beta}$-lactoglobulin were separated within 5 min at a mobile phase flow rate of 4 mL/min.

  • PDF

Desalting of papermaking tobacco sheet extract using selective electrodialysis

  • Li, Chuanrun;Ge, Shaolin;Li, Wei;Zhang, Zhao;She, Shike;Huang, Lan;Wang, Yaoming
    • Membrane and Water Treatment
    • /
    • v.8 no.4
    • /
    • pp.381-393
    • /
    • 2017
  • The inorganic components in tobacco sheet extract have significant influence on the sensory taste of the cigars and the harmful component delivery in cigarette smoke. To identify the contributions of the divalent inorganic components on harmful components delivery in cigarette smoke, a self-made selective electrodialysis was assembled with monovalent ion-selective ion exchange membranes. The influences of current density and extract content on the desalination performance were investigated. Result indicates that the majorities chloride, nitrate, and sulfate ions were removed, comparing with 50-60% of potassium and only less than 10% of magnesium and calcium ions removed in the investigated current density. The permselectivity of the tested cations across the Selemion CSO cation exchange membranes follows the order: $K^+>Ca^{2+}>Mg^{2+}$. A current density of $15mA/cm^2$ is an optional choice by considering both the energy consumption and separation efficiency. When the extract contents are in the range of 7%-20%, the removal ratios the potassium ions are kept around 60%, while the removal ratios of the calcium and magnesium ions fluctuate in the range of 16-27% and 8-14%, respectively. The tobacco smoke experiments indicated that the divalent metal ions have dual roles for the harmful component delivery in cigarette smoke. The divalent potassium and calcium ions were unfavorable for the total particulate matter emission but beneficial to decrease the HCN delivery in the mainstream cigarette smoke. The selective electrodialysis is a robust technology to decrease the harmful component delivery in cigarette smoke.

The Effect of Different Membranes on the Performance of Aqueous Organic Redox Flow Battery using Methyl Viologen and TEMPOL Redox Couple (다양한 멤브레인을 적용한 메틸 바이올로겐과 템폴 활물질 기반 수계 유기 레독스 흐름 전지 성능 평가)

  • Park, GyunHo;Lee, Wonmi;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.868-873
    • /
    • 2019
  • In this study, the evaluation of performance of AORFB using methyl viologen and TEMPOL as organic active materials in neutral supporting electrolyte (NaCl) with various membrane types was performed. Using methyl viologen and TEMPOL as active materials in neutral electrolyte solution, the cell voltage is 1.37V which is relatively high value for AORFB. Two types of membranes were examined for performance comparison. First, when using Nafion 117 membrane which is commercial cation exchange membrane, only the charge process occurred in the first cycle and the single cell couldn't work because of its high resistance. However, when using Fumasep anion exchange membrane (FAA-3-50) instead of Nafion 117 membrane, the result was obtained as the totally different charge-discharge graphs. When current density was $40mA{\cdot}cm^{-2}$ and cut off voltage range was from 0.55 V to 1.7 V, the charge efficiency (CE) was 97% and voltage efficiency (VE) was 78%. In addition, the discharge capacity was $1.44Ah{\cdot}L^{-1}$ which was 54% of theoretical capacity ($2.68Ah{\cdot}L^{-1}$) at $10^{th}$ cycle and the capacity loss rate was $0.0015Ah{\cdot}L^{-1}$ per cycle during 50 cycles. Through cyclic voltammetry test, it seems that this difference in the performance between the full cell using Nafion 117 membrane and Fumasep anion exchange membrane came from increasing resistance due to chemical reaction between membrane and active material, not the capacity loss due to cross-over of active material through membrane.

Hydrogen Production from Water Electrolysis Driven by High Membrane Voltage of Reverse Electrodialysis

  • Han, Ji-Hyung;Kim, Hanki;Hwang, Kyo-Sik;Jeong, Namjo;Kim, Chan-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.302-312
    • /
    • 2019
  • The voltage produced from the salinity gradient in reverse electrodialysis (RED) increases proportionally with the number of cell pairs of alternating cation and anion exchange membranes. Large-scale RED systems consisting of hundreds of cell pairs exhibit high voltage of more than 10 V, which is sufficient to utilize water electrolysis as the electrode reaction even though there is no specific strategy for minimizing the overpotential of water electrolysis. Moreover, hydrogen gas can be simultaneously obtained as surplus energy from the electrochemical reduction of water at the cathode if the RED system is equipped with proper venting and collecting facilities. Therefore, RED-driven water electrolysis system can be a promising solution not only for sustainable electric power but also for eco-friendly hydrogen production with high purity without $CO_2$ emission. The RED system in this study includes a high membrane voltage from more than 50 cells, neutral-pH water as the electrolyte, and an artificial NaCl solution as the feed water, which are more universal, economical, and eco-friendly conditions than previous studies on RED with hydrogen production. We measure the amount of hydrogen produced at maximum power of the RED system using a batch-type electrode chamber with a gas bag and evaluate the interrelation between the electric power and hydrogen energy with varied cell pairs. A hydrogen production rate of $1.1{\times}10^{-4}mol\;cm^{-2}h^{-1}$ is obtained, which is larger than previously reported values for RED system with simultaneous hydrogen production.