• Title/Summary/Keyword: cathodic arc deposition

Search Result 52, Processing Time 0.024 seconds

Influence of Deposition Temperature on the Film Growth Behavior and Mechanical Properties of Chromium Aluminum Nitride Coatings Prepared by Cathodic Arc Evaporation Technique

  • Heo, Sungbo;Kim, Wang Ryeol
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.3
    • /
    • pp.139-143
    • /
    • 2021
  • Cr-Al-N coatings were deposited onto WC-Co substrates using a cathodic arc evaporation (CAE) system. CAE technique is recognized to be a very useful process for hard coatings because it has many advantages such as high packing density and good adhesion to metallic substrates. In this study, the influence of deposition temperature as a key process parameter on film growth behavior and mechanical properties of Cr-Al-N coatings were systematically investigated and correlated with microstructural changes. From various analyses, the Cr-Al-N coatings prepared at deposition temperature of 450℃ in the CAE process showed excellent mechanical properties with higher deposition rate. The Cr-Al-N coatings with deposition temperature around 450℃ exhibited the highest hardness of about 35 GPa and elastic modulus of 442 GPa. The resistance to elastic strain to failure (H/E ratio) and the index of plastic deformation (H3/E2 ratio) were also good values of 0.079 and 0.221 GPa, respectively, at the deposition temperature of 450℃. Based on the XRD, SEM and TEM analyses, the Cr-Al-N coatings exhibited a dense columnar structure with f.c.c. (Cr,Al)N multi-oriented phases in which crystallites showed irregular shapes (50~100nm in size) with many edge dislocations and lattice mismatches.

Properties of AlTiN Films Deposited by Cathodic Arc Deposition (음극 아크 증착으로 제조된 AlTiN 박막의 특성)

  • Yang, Ji-Hoon;Kim, Sung-Hwan;Song, Min-A;Jung, Jae-Hun;Jeong, Jae-In
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.307-315
    • /
    • 2016
  • The properties of AlTiN films by a cathodic arc deposition process have been studied. Oblique angle deposition has been applied to deposit AlTiN films. AlTiN films have been deposited on stainless steel (SUS304) and cemented carbide (WC) at a substrate temperature of $500^{\circ}C$. AlTiN films were analyzed by scanning electron microscopy, glow-discharge light spectroscopy, micro-vickers hardness, and nanoindenter. When applying a current of 50 A to the cathodic arc source, it showed that the density of macroparticle of AlTiN films was 5 lower than other deposition conditions. With the increase of the bias voltage applied to the substrate up to -150 V, the density of macroparticle was decreased. The change of the $N_2$ flow rate during coating process made no influence on the film properties. For the multi-layered films, the film prepared at oblique angle of $60^{\circ}$ showed the highest hardness of 28 GPa and $H^3/E^2$ index of 0.18. AlTiN films have been shown a good oxidation resistance up to $800^{\circ}C$.

Optimization of tetrahedral amorphous carbon (ta-C) film deposited with filtered cathodic vacuum arc through Taguchi robust design (다구찌 강건 설계를 통한 자장 여과 아크 소스로 증착된 사면체 비정질 탄소막의 최적화)

  • Kwak, Seung-Yun;Jang, Young-Jun;Ryu, Hojun;Kim, Jisoo;Kim, Jongkuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.2
    • /
    • pp.53-61
    • /
    • 2021
  • The properties of tetrahedral amorphous Carbon (ta-C) film can be determined by multiple parameters and comprehensive effects of those parameters during a deposition process with filtered cathodic vacuum arc (FCVA). In this study, Taguchi method was adopted to design the optimized FCVA deposition process of ta-C for improving deposition efficiency and mechanical properties of the deposited ta-C thin film. The influence and contribution of variables, such as arc current, substrate bias voltage, frequency, and duty cycle, on the properties of ta-C were investigated in terms of deposition efficiency and mechanical properties. It was revealed that the deposition rate was linearly increased following the increasing arc current (around 10 nm/min @ 60 A and 17 nm/min @ 100A). The hardness and ID/IG showed a correlation with substrate bias voltage (over 30 GPa @ 50 V and under 30 GPa @ 250 V). The scratch tests were conducted to specify the effect of each parameter on the resistance to plastic deformation of films. The analysis on variances showed that the arc current and substrate bias voltage were the most effective controlling parameters influencing properties of ta-C films. The optimized parameters were extracted for the target applications in various industrial fields.

Effect of Negative Substrate Bias Voltage on the Microstructure and Mechanical Properties of Nanostructured Ti-Al-N-O Coatings Prepared by Cathodic Arc Evaporation

  • Heo, Sungbo;Kim, Wang Ryeol;Park, In-Wook
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.3
    • /
    • pp.133-138
    • /
    • 2021
  • Ternary Ti-X-N coatings, where X = Al, Si, Cr, O, etc., have been widely used for machining tools and cutting tools such as inserts, end-mills, and etc. Ti-Al-N-O coatings were deposited onto silicon wafer and WC-Co substrates by a cathodic arc evaporation (CAE) technique at various negative substrate bias voltages. In this study, the influence of substrate bias voltages during deposition on the microstructure and mechanical properties of Ti-Al-N-O coatings were systematically investigated to optimize the CAE deposition condition. Based on results from various analyses, the Ti-Al-N-O coatings prepared at substrate bias voltage of -80 V in the process exhibited excellent mechanical properties with a higher compressive residual stress. The Ti-Al-N-O (-80 V) coating exhibited the highest hardness around 30 GPa and elastic modulus around 303 GPa. The improvement of mechanical properties with optimized bias voltage of -80 V can be explained with the diminution of macroparticles, film densification and residual stress induced by ion bombardment effect. However, the increasing bias voltage above -80 V caused reduction in film deposition rate in the Ti-Al-N-O coatings due to re-sputtering and ion bombardment phenomenon.

Thickness Distributions of Metal Nitride Films Manufactured by Cathodic Vacuum Arc Deposition (음극진공아크에 의해 제조된 금속질화물 박막의 두께 분포)

  • Gwon, O-Jin;Kim, Mi-Seon;Lee, Jeong-Seok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.103.2-103.2
    • /
    • 2016
  • 금속질화물 박막은 대표적인 고경도, 고내열성 박막이다. 박막의 두께는 기계적물성과 밀접한 상관관계가 있으며, 두께의 관리와 제어는 매우 중요하다. 3조 2배열의 증발원을 이용하여 Cathodic vacuum arc deposition(CVAD)법으로써 금속질화물 박막을 제조하였으며, 평균 두께 $4.38{\mu}m$, 표준편차 ${\pm}11.5%$ 박막들을 제조할 수 있었다. 증발원과 증발원 사이의 중첩이 되는 지점에 장착된 시편보다 각각의 증발원에서 평행한 위치에 장착된 시편에 코팅된 박막이 두꺼웠다.

  • PDF

빗각 증착 기술과 이를 이용한 박막의 제조 및 특성

  • Jeong, Jae-In;Yang, Ji-Hun;Park, Hye-Seon;Jeong, Jae-Hun;Song, Min-A
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.125-125
    • /
    • 2012
  • 물리증착(physical vapor deposition; PVD)은 진공 또는 특정 가스 분위기에서 고상의 물질을 기화시켜 기판에 피막을 형성하는 방법으로 증발과 스퍼터링 그리고 이온플레이팅 등이 있다. PVD 방법으로 박막을 제작하면 대부분의 박막은 주상정 구조로 성장하게 된다. 이러한 주상정의 조직을 제어하는 방법으로 빗각 증착(oblique angle deposition; OAD) 기술이 있다. OAD는 타겟(증발원)에 대해서 기판을 평행하게 배치하는 일반적인 코팅방법과는 달리 기판의 수직성분과 타겟의 수직성분이 이루는 각도가 0도 이상이 되도록 조절하여 기판을 기울인 상태로 코팅하는 방법을 말한다. OAD 방법을 이용하면 기판으로 입사하는 증기가 초기에 생성된 핵(seed)에 의해 shadowing이 발생하면서 증기가 수직으로 입사하는 normal 증착과는 다른 형상의 성장 조직이 만들어지게 된다. 본 논문에서는 OAD 방법을 이용하여 Al과 TiN 박막을 제조하고 그 특성을 비교하였다. Al 박막은 UBM (Un-Balanced Magnetron) 스퍼터링 소스를 이용하여 빗각을 각각 0, 30, 45, 60 및 90도의 각도에서 강판 및 실리콘 웨이퍼 상에 시편을 제조하되 단층 및 다층으로 시편을 제조하고 치밀도와 함께 조도와 반사율을 비교하고 염수분무시험을 이용하여 내식성을 평가하였다. TiN 박막은 Cathodic Arc 방식을 이용하되 Al 박막과 동일한 방법으로 코팅을 하고 내식성 및 경도 등의 특성을 비교하였다. TiN 박막은 경사각이 커지면서 경도가 낮아졌으나 바이어스 전압을 이용하여 다층으로 제조함에 의해 경도는 유지하면서 modulus를 낮출 수 있어서 박막의 신뢰성을 나타내는 H3/E2 값은 증가함을 알 수 있었다.

  • PDF

Mechanical Properties of TiAlSiN films Coated by Hybrid Process (하이브리드 공정으로 제조한 TiAlSiN 박막의 특성)

  • Song, Min-A;Yang, Ji-Hoon;Jung, Jae-Hun;Kim, Sung-Hwan;Jeong, Jae-In
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.174-180
    • /
    • 2014
  • In this study, TiAlSiN coatings have been successfully synthesized on stainless steel and tungsten carbide substrate by a hybrid coating method employing a cathodic arc and a magnetron sputtering source. TiAl and Si target were vaporized with the cathodic arc source and the magnetron sputtering source, respectively. Process gas was the mixture of nitrogen and argon gas. With the increase of Si content, the crystallinity and the grain size of TiAlSiN film was decreased. At the Si content of more than 8 at.%, grain size of TiAlSiN was saturated at around 2 nm. The hardness value of the TiAlSiN film increased with incorporation of Si, and had the maximum value of ~ 3,233 Hv at the Si content of 9.2 at.%. The oxidation resistance of TiAlSiN film was enhanced with the increase of Si content.

Properties of TiN Films Fabricated by Oblique Angle Deposition (빗각 증착으로 제조된 TiN 박막의 특성)

  • Jung, Jae-Hun;Yang, Ji-Hoon;Park, Hye-Sun;Song, Min-A;Jeong, Jae-In
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.3
    • /
    • pp.106-110
    • /
    • 2012
  • Oblique angle deposition (OAD) is a physical vapor deposition where incident vapor flux arrives at non-normal angles. It has been known that tilting the substrate changes the properties of the film, which is thought to be a result of morphological change of the film. In this study, OAD has been applied to prepare single and multilayer TiN films by cathodic arc deposition. TiN films have been deposited on cold-rolled steel sheets and stainless steel sheet. The deposition angle as well as substrate temperature and substrate bias was changed to investigate their effects on the properties of TiN films. TiN films were analyzed by color difference meter, scanning electron microscopy, nanoindenter and x-ray diffraction. The color of TiN films was not much changed according to the deposition conditions. The slanted and zigzag structures were observed from the single and multilayer films. The relation between substrate tilting angle (${\alpha}$) and the growth column angle (${\beta}$) followed the equation of $tan{\alpha}=2tan{\beta}$. The indentation hardness of TiN films deposited by OAD was low compared with the ones prepared at normal angle. However, it has been found that $H^3/E^2$ ratio of 3-layer TiN films prepared at OAD condition was a little higher than the ones prepared at normal angle, which can confirm the robustness of prepared films.