• Title/Summary/Keyword: cathodic acid material

Search Result 12, Processing Time 0.021 seconds

Study on the Cathodic Protectioin Behavior of Hot Water Boiler by Mg-Alloy Galvanic Anode (Mg 합금유전양긍에 의한 온수보일러의 음극방식거동에 관한 연구)

  • 정기철
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.115-121
    • /
    • 2000
  • As the development of industry water quality of river is going to bad because of waste water of an industrial complex and general home agricultural chemicals exhaust of $SO_3$ and CO gas acid rain and so on. Corrosion damage of boiler factory equipment and so forth occur quickly due to using of the polluted water resulting in increasing leak accident. Especially working life of hot water boiler using the polluted water becomes more short and energy loss increases. The cathodic protection method is the most economical and reliable one to prevent corrosion damage of steel structures. Mg-base alloys galvanic anode protection of cathodic protection method is suitable for than application of hot water boiler using water with high specific resistance such as tap water. This paper is studied on the cathodic protection characteristics of how water boiler. In tap water and 0.001mol/$\ell$ NaCl solution the characteristics of anodic polarization of Mg-base alloys galvanic anode and tube material is investigated the measurement of cathodic protection potential according to the time elaspsed is carried out.

  • PDF

Selective Leaching of $LiCoO_2$in an Oxalic Acid Solution (Oxalic acid용액에서 $LiCoO_2$의 선택침출)

  • 이철경;양동효;김낙형
    • Resources Recycling
    • /
    • v.11 no.3
    • /
    • pp.10-16
    • /
    • 2002
  • In the leaching of $LiCoO_2$with a strong acid such as sulfuric and nitric acid, an additional step was needed to recover cobalt and lithium separately from spent lithium ion batteries (LIBs). The leaching of $LiCoO_2$in an oxalic acid solution was investigated to recover cobalt selectively using a low solubility of cobalt oxalate at low pH. Leaching efficiency of 95% of lithium and less than 1% of cobalt were obtained when pure $LiCoO_2$powder was leached in 3M oxalic acid at $80^{\circ}C$ and 50 g/L pulpdensity. Under the above leaching conditions, complete dissolution of lithium was accomplished with mere 0.25% of cobalt in the solution when the cathodic active material collected from spent LIBs was employed. The lithium in the leaching solution can be recovered as a form of carbonate or hydroxide depending on the addition of $Na_2$$CO_3$or LiOH.

A Study on the Property Improvement of a Lead-Acid Battery by Inhibitor Addition (인히비터 첨가에 의한 연축전지의 성능 향상에 관한 연구)

  • Park, Gyeong-Hwa;Kim, Seong-Jong;Mun, Gyeong-Man
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.1
    • /
    • pp.96-103
    • /
    • 1998
  • Lead-acid battery is being most widely used with secondary battery because of its low price, and long life cycles. But According to using for a long time, its voltage, capacity, and recovery ability is decreased gradually. Therefore there are many papers about improving the property of a lead-acid battery. One of them is to slow down sulfation due to formation of inner PbSO sub(4) by adding inhibitor to electrolyte, however it was not well known what is inhibitor's composition and its role acting on both cathodic and anodic electrode because of its know-how of every country and companies. The purpose of this paper is to study about improvement of property of lead-acid battery by adding one of the inhibitor to H sub(2) SO sub(4) electrolyte.

  • PDF

Recovery of Cobalt from Waste Cathodic Active Material Generated in Manufacturing Lithium Ion Batteries by Hydrometallugical Process (리튬이온전지 제조공정의 폐양극활물질로부터 습식제련공정에 의한 코발트의 회수)

  • Swain Basudev;Jeong Jinki;Kim Min Seuk;Lee Jae-chun;Sohn Jeong-Soo
    • Resources Recycling
    • /
    • v.14 no.6 s.68
    • /
    • pp.28-36
    • /
    • 2005
  • A hydrometallurgical process to leach cobalt from the waste cathodic active material, $LiCoO_{2}$, and subsequently to separate it by solvent extraction was developed. The optimum leaching conditions for high recovery of colbalt and lithium were obtained: 2.0 M sulfuric acid, 5 $vol.\%$ hydrogen peroxide, $75^{\circ}C$ leaching temperature, 30 minutes leaching time and an initial pulp density of 100 g/L. The respective leaching efficiencies for Co and Li were $93\%$ and $94.5\%$. About $85\%$ Co was extracted from the sulfuric acid leach liquor containing 44.72 g/L Co and 5.43 g/L Li, using 1.5 M Cyanex272 as an extractant at the initial pH 5.0 and in organic to aqueous phase ratio of 1.6:1 under the single stage extraction conditions. The Co in the raraffinate was completely extracted by 0.5 M Na-Cyanex272 at the inital pH 5.0, and an organic to aqueous phase ratio of 1;1. The cobalt sulfate solution of higher than $99.99\%$ purity could be recovered from waste $LiCoO_{2}$, using a series of hydrometallurgical processes: sulfuric acid leaching of waste $LiCoO_{2}$- solvent extraction of Co by Na-Cyanex 271 - scrubbing of Li by sodium carbonate solution - stripping of Co by sulfuric acid solution.

Etchant for Dissolving Thin Layer of Ag-Cu-Au Alloy

  • Utaka, Kojun;Komatsu, Toshio;Nagano, Hiroo
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.304-307
    • /
    • 2007
  • As to the reflection electrode of LCD (liquid crystal displays), silver-copper-gold alloy (hereafter, it is called as ACA (Ag98%, Cu1%, Au1%)) is an effective material of which weathering resistance can be improved more compared with pure silver. However, there is a problem that gold remains on the substrate as residues when ACA is etched in cerium ammonium nitrate solution or phosphoric acid. Gold can not be etched in these etchants as readily as the other two alloying elements. Gold residue has actually been removed physically by brushing etc. This procedure causes damage to the display elements. Another etchant of iodine/potassium iodide generally known as one of the gold etchants can not give precise etch pattern because of remarkable difference in etching rates among silver, copper and gold. The purpose of this research is to obtain a practical etchant for ACA alloy. The results are as follows. The cyanogen complex salt of gold generates when cyanide is used as the etchant, in which gold dissolves considerably. Oxygen reduction is important as the cathodic reaction in the dissolution of gold. A new etchant of sodium cyanide / potassium ferricyanide whose cathodic reduction is stronger than oxygen, can give precise etch patterns in ACA alloy swiftly at room temperature.

Electrochemical Evaluation on Corrosion Resistance of Anti-corrosive Paints

  • Moon, Kyung-Man;Lee, Myung-Hoon;Kim, Yun-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.387-394
    • /
    • 2009
  • It has been observed that coated steel structures are rapidly deteriorated than designed lifetime due to acid rain caused by air pollution etc.. Therefore improvement of corrosion resistance of anti-corrosive paint is very important in terms of safety and economic point of view. In this study corrosion resistance for five kinds of anti-corrosive paints including acryl, fluorine and epoxy resin series were investigated with electrochemical methods such as corrosion potential, polarization curves, impedance and cyclic voltammogram measurements etc.. There were somewhat good relationships between values measured by electrochemical methods such as corrosion current density obtained by cathodic and anodic polarization curves, value of impedance estimated with AC impedance, and polarization resistance on the cyclic voltammogram, for example, corrosion current density was decreased with increasing of values of impedance and polarization resistance on the cyclic voltammogram. However their relationships between corrosion current density and corrosion potential were not well coincided each other. Consequently it is considered that although a corrosion potential of F101 of fuoric resin series shifted to negative direction than other anti-corrosive paints, its corrosion resistance, indicating on the cathodic and anodic polarization curves, AC impedance curves and cyclic voltammogram, was the most superior to other paints, whereas A100 containing arcylic resin showed a relatively poor corrosion resistance compared to other paints.

A Study on Chromium Electroplating of Piston Ring Groove's Surface (엔진피스톤링 홈의 크롬도금에 관한 연구)

  • 문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.47-55
    • /
    • 1995
  • When the low heavy oil is using as fuel oil to the diesel engine, some problems such as corrosion resistance, wear resistance and heat resistance are happened in diesel engine's internal material, especially the adhesive wear of piston ring groove was occurred as a important problem. Therefore to prevent adhesive wear of its groove, the surface of its groove used to be electroplated with Chrominum and for its Chromium electroplating, Fe anode is being used until nowadays because of its Special shape. However in case of using Fe anode, there were some problems such as deterioation of solution, property of Chromium film, and condition of coation. In this paper Pb anode electroplated withPb to the steel plate was investigated for its Chromium electroplating for Pb's high corrosion resistance in acid solution, and Pb anode is not dissolved compared with Fe anode and deterioration degree of solution in case of Pb anode is smaller than that of Fe anode and also property of Chromium film was better than that of Fe anode. Moreover it was known that the optimum cathodic current density for Pb electroplating to steel plate as insoluable anode for Chromium coating of piston ring groove is 30mA/$cm^2$ by experimental results obtained.

  • PDF

FORMATION OF AMORPHOUS NICKEL-PHOSPHORUS ALLOY FILM

  • Yamashita, Tsugito;Komiyama, Toyohiko
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.720-723
    • /
    • 1996
  • The behavior of electrodeposition of amorphous nickel-phosphorus has been studied from the point of deposition mechanism, kinetic parameters, morphology and formation of alloy films. The electorode reaction and electrode kinetics of deposition of nickel were significantly influenced by the content of phosphorus. The cathodic deposition of nickel-phosphorus alloy might be governed by the diffusion process of phosphorous acid. The direction of growth layer of the nickel-phosphorus alloy was different with substrate material. The formation of nickel-phosphorus alloy films was affected considerably by the solution compositions, electrolytic conditions and properties of the material as an underlayer.

  • PDF

DISCHARGE CHARACTERISTICS OF NICKELOXIDE ELECTRODE PREPARED FROM ELECTROCHEMICAL IMPREGNATION

  • Takenoya, K.;Sasaki, Y.;Yamashita, T.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.363-365
    • /
    • 1999
  • The improved method comprises electrochemically deposition of nickel hydroxide into the sintered nickel plaque cathode from nickel aqueous electrolyte at acid pH in a treating zone containing an anode. The electrochemical impregnation was examined under various conditions. Deposition condition of fine active material was obtained from the impregnation of a high temperature and also high current density. This method also could be decreased swelling and buckling of the plaque. A nickel electrode prepared by electrochemical impregnation is useful as the positive in nickel-cadmium cells. The utilization of the active material indicated almost 100% based on a one electron charge.

  • PDF

Effect of copper surface to $HNO_3$ and $KNO_3$ electrolyte ($KNO_3$$HNO_3$ 전해액이 Cu에 미치는 영향)

  • Seo, Yong-Jin;Han, Sang-Jun;Park, Sung-Woo;Lee, Young-Kyun;Lee, Sung-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.486-486
    • /
    • 2009
  • In this paper, the current-voltage (I-V) curves, such as linear sweep voltammetry (LSV) and cyclic voltammetry (CV), were employed to evaluate the effect of electrolyte concentration on the electrochemical reaction trend. From the I-V curve, the electrochemical states of active, passive, transient and trans-passive could be characterized. And then, we investigated that how this chemical affect the process of voltage-induced material removal in electrochemical mechanical polishing (ECMP) of Copper. The scanning electron microscopy (SEM) and energy dispersive spectroscopy EDS) analyses were used to observe the surface profile. Finally, we monitored the oxidation and reduction process of the Cu surface by the repetition of anodic and cathodic potential from cyclic voltammetry (CV) method in acid- and alkali-based electrolyte. From these analyses, it was important to understand the electrochemical mechanisms of the ECMP technology.

  • PDF