The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ silicate was prepared by blending of $Li_2MnSiO_4$ and $Li_2FeSiO_4$ precursors with same molar ratio. The one of the silicates of $Li_2FeSiO_4$ is known as high capacitive up to ~330 mAh/g due to 2 mole electron exchange, and the other of $Li_2FeSiO_4$ has identical structure with $Li_2MnSiO_4$ and shows stable cycle with less capacity of ~170 mAh/g. The major drawback of silicate family is low electronic conductivity (3 orders of magnitude lower than $LiFePO_4$). To overcome this disadvantage, carbon composite of the silicate compound was prepared by sucrose mixing with silicate precursors and heat-treated in reducing atmosphere. The crystal structure and physical morphology of $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ was investigated by X-ray diffraction, scanning electron microscopy, and high resolution transmission electron microscopy. The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$/C nanocomposite has a maximum discharge capacity of 200 mAh/g, and 63% of its discharge capacity is retained after the tenth cycles. We have realized that more than 1 mole of electrons are exchanged in $Li_2Mn_{0.5}Fe_{0.5}SiO_4$. We have observed that $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ is unstable structure upon first delithiation with structural collapse. High temperature cell performance result shows high capacity of discharge capacity (244 mAh/g) but it had poor capacity retention (50%) due to the accelerated structural degradation and related reaction.
Kim, Do Hun;Jeong, Yu Deok;Kim, Sang Pil;Sim, Un Bo
Bulletin of the Korean Chemical Society
/
v.21
no.11
/
pp.1125-1132
/
2000
The pH effect of the precursor solution on the preparation of $LiCoO_2$ by a solution phase reaction containing malonic acid was carried out. Layered $LiCoO_2$ powders were obtained with the precursors prepared at the different pHs (4, 7, and 9) and heat-treated at $700^{\circ}C(LiCoO_2-700)$ or $850^{\circ}C(LiCoO_2-850)$ in air. pHs of the media for precursor synthesis affects the charge/discharge and electrochemical properties of the $LiCoO_2electrodes.$ Upon irrespective of pH of the precursor media, X-ray diffraction spectra recorded for $LiCoO_2-850$ powder showed higher peak intensity ratio of I(003)/I(104) than that of $LiCoO_2-700$, since the better crystallization of the former crystallized better. However, $LiCoO_2$ synthesized at pH 4 displayed an abnormal higher intensity ratio of I(003)/I(104) than those synthesized at pH 7 and 9. The surface morphology of the $LiCoO_2-850$ powders was rougher and more irregular than that of $LiCoO_2-700$ made from the precursor synthesized at pH 7 and 9. The $LiCoO_2electrodes$ prepared with the precursors synthesized at pH 7 and 9 showed a better electrochemical and charge/discharge characteristics. From the AC impedance spectroscopic experiments for the electrode made from the precursor prepared in pH 7, the chemical diffusivity of Li ions (DLi+) in $Li0.58CoO_2determined$ was 2.7 ${\times}$10-8 $cm^2s-1$. A cell composed of the $LiCoO_2-700$ cathode prepared in pH 7 with Lithium metal anode reveals an initial discharge specific capacity of 119.8 mAhg-1 at a current density of 10.0 mAg-1 between 3.5 V and 4.3 V. The full-cell composed with $LiCoO_2-700$ cathode prepared in pH 7 and the Mesocarbon Pitch-based Carbon Fiber (MPCF) anode separated by a Cellgard 2400 membrane showed a good cycleability. In addition, it was operated over 100 charge/discharge cycles and displayed an average reversible capacity of nearly 130 mAhg-1.
The cathodic active material of $Li/SO_2Cl_2$ battery is $SO_2Cl_2$, which is the solvent of an electrolyte. It is referred to as a catholyte, a compound word of cathode and electrolyte. As the battery discharges, the catholyte burns out. And thus, the characteristics of the $SO_2Cl_2$ in the battery determine the capacity. In addition, the transition minimum voltage (TMV) and the voltage delay deviation of $Li/SO_2Cl_2$ battery are due to the passivation film formed by the reaction between an electrolyte and Li. Impurities in the electrolyte, such as moisture or heavy metal ions, will accelerate the growth of the passivation film. Therefore, a technology must be established to purify an electrolyte and to ensure the effectiveness of the purification method. In this research, $LiAlCl_4/SO_2Cl_2$ was manufactured using $AlCl_3$ and LiCl. Its concentration, the amount of moisture, and the metal amount were evaluated using an ionic conductivity meter, a colorimeter, and FT-IR.
Hee-Seon Kim;Dae-Weon Kim;Byung-Man Chae;Sang-Woo Lee
Resources Recycling
/
v.32
no.3
/
pp.9-17
/
2023
Efforts are currently underway to develop a method for efficiently recovering lithium from the cathode material of waste lithium iron phosphate batteries (LFP). The successful application of lithium battery recycling can address the regional ubiquity and price volatility of lithium resources, while also mitigating the environmental impact associated with both waste battery material and lithium production processes. The isomorphic substitution leaching process was used to recover lithium from spent lithium iron phosphate batteries. Lithium was leached by the isomorphic substitution of Fe2+ in LFP using a relatively inexpensive ferric chloride etching solution as a leaching agent. In the study, the leaching rate of lithium was compared using the ferric chloride etching solution at various multiples of the LFP molar ratio: 0.7, 1.0, 1.3, and 1.6 times. The highest lithium leaching rate was shown at about 98% when using 1.3 times the LFP molar ratio. Subsequently, to eliminate Fe, the leachate was treated with NaOH. The Fe-free solution was then used to synthesize lithium carbonate, and the harvested powder was characterized and validated. The surface shape and crystal phase were analyzed using SEM and XRD analysis, and impurities and purity were confirmed using ICP analysis.
Recently, many researches on the high-voltage 5 V class cathode material have focused on $LiNi_{0.5}Mn_{1.5}O_4$, where $Mn^{3+}$ in the existing $LiMn_2O_4 (Li[Mn^{3+}][Mn^{4+}]O_4)$ is replaced by $Ni^{2+}(Li[Ni^{2+}]_{0.5}[Mn^{4+}]_{1.5}O_4)$ in order to utilize $Ni^{2+}/Ni^{4+}$ redox reaction in the 5V region. The partial substitution of Mn in $LiMn_2O_4$ for other transition metal element, $LiM_yMn_{1-y}O_4$(M=Cr, Al, Ni, Fe, Co, Cu, Ga etc) is known as a good solution to overcome the problems associated with $LiMn_2O_4$ like the gradual capacity fading. In this study, we synthesized $LiNi_{0.5}Mn_{1.5}O_4$ through a mechanochemical process and investigated its morphological, crystallographic and electrochemical characteristics. The results showed that 4 V peaks had been found in the cyclic volammograms of the synthesized powders due to the existence of $Mn^{3+}$ from the incomplete substitution of $Ni^{2+}$ for $Mn^{3+}$ implying that the mechanochemical activation alone was not good enough to synthesize an exact stoichiometric compound of $LiNi_{0.5}Mn_{1.5}O_4$. The synthetic condition of mechanochemical process, such as type of starting materials, ball-mill and calcination condition was optimized for the best electrochemical performance.
$(NH_4)_{0.3}V_2O_5$ nanorods and $V_2O_5$ nanosheets have been synthesized by the reaction of $V_2O_5$ gel via homogeneous precipitation process employing urea and formic acid. The electrochemical and chemical characteristics of these nanomaterials have been investigated using TGA, SEM, FT-IR, XRD, and LSV. The interlayer distance of $(NH_4)_{0.3}V_2O_5$ was about $10.7{\AA}$, and that of $V_2O_5$ synthesized by using formic acid was $14.2{\AA}$. The surface morphology of $(NH_4)_{0.3}V_2O_5$ and $V_2O_5$ showed features that looked like nanorods and nanosheets, respectively. Specific capacity of $(NH_4)_{0.3}V_2O_5$ nanorods prepared at $95^{\circ}C$ was at least 280 mAh/g at 10 mA/g discharge rate.
The purpose of this study is to analyze the understandings of science high school students on the conception of chemical cell in relation to chemical equilibrium from the microscopic viewpoint at molecular level through questionnaires and follow-up interviews. The results show that they have high understandings on the chemical equilibrium states in the electrochemical cell and on the redox reaction taking place simultaneously when a metal electrode is immersed in the metal ion solution. However, they do not fully comprehend the development of electrical potential difference, electron movement, electrode potential measurement in the half-cells, and calculation of the net cell voltage between anode and cathode in the chemical cell because of difficulties in the microscopic understanding the interaction on the interface at the electrode and the electrolyte solution.
Kim, Ho-Jin;Chung, Uoo-Chang;Jeong, Yeon-Uk;Lee, Joon-Hyung;Kim, Jeong-Joo
Journal of the Korean Ceramic Society
/
v.42
no.9
s.280
/
pp.602-606
/
2005
[ $LiCoO_{2}$ ] is the most common cathode electrode materials in Lithium-ion batteries. $LiCo_{0.97}Mg_{0.03}O_2$ was synthesized by the solid-state reaction method. We investigated crystal structures, electrical conductivities and electrochemical properties. The crystal structure of $LiCo_{0.97}Mg_{0.03}O_2$ was analyzed by X-ray powder diffraction and Rietveld refinement. The material showed a single phase of a layered structure with the space group R-3m. The lattice parameter(a, c) of $LiCo_{0.97}Mg_{0.03}O_2$ was larger than that of $LiCoO_2$. The electrical conductivity of sintered samples was measured by the Van der Pauw method. The electrical conductivities of $LiCoO_2$ and $LiCo_{0.97}Mg_{0.03}O_2$ were $2.11{\times}10^{-4}\;S/cm$ and $2.41{\times}10^{-1}\;S/cm$ at room temperature, respectively. On the basis of the Hall effect analysis, the increase in electrical conductivities of $LiCo_{0.97}Mg_{0.03}O_2$ is believed due to the increased carrier concentrations, while the carrier mobility was almost invariant. The electrochemical performance was investigated by coin cell test. $LiCo_{0.97}Mg_{0.03}O_2$ showed improved cycling performance as compared with $LiCoO_2$.
Lee, Jinsil;Yu, Hakgyoon;Lee, Younki;Kim, Jae-Kwang;Joo, Jong Hoon
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.33
no.5
/
pp.411-417
/
2020
In this study, we introduce a Na β"-alumina composite thick film as a solid electrolyte, to reduce the resistance of electrolyte for a Na/S battery. An alumina/zirconia composite material was used to enhance the mechanical properties of the electrolyte. A solid electrolyte of about 40 ㎛ thick was successfully fabricated through the conversion and tape-casting methods. In order to investigate the effect of the surface treatment process of the solid electrolyte on the battery performance, the electrolyte was polished by dry and wet processes, respectively, and then the Na/S batteries were prepared for analyzing the battery characteristics. The battery with the dry process performed much better than the battery made with the wet process. As a result, the battery manufactured by the dry process showed excellent performance. Therefore, it is confirmed that the surface treatment process of the solid electrolyte has an important effect on the battery capacity and coulombic efficiency, as well as the interface reaction.
We synthesized two new series of alternating copolymers, poly[bis(2-(4-phenylenevinylene)-2-cyanoethenyl)-9,9-dihexyl-9H-fluoren-2,7-yl-alt-1,4-phenylene](Polymer-I)and poly[bis(2-(4-phenylenevinylene)-2cyanoethenyl)-9,9-dihexyl-9H-fluoren-2,7-yl-alt-2,7-(9,9-dihexylfluorene)](Polymer-II), via the Suzuki coupling reaction, for use in light-emitting diodes (LEDs). Defect-free uniformly thin films of these polymers were found to be easily formed on indium-tin oxide (ITO) coated glass substrates. Multi-layer LEDs with ITO/PEDOT/Polymer/ LiF/Al configurations with or without an $Alq_3$ electron transport layer were fabricated with these polymers. The maximum EL emissions of Polymer-I and Polymer-II with an $Alq_3/LiF/Al$ cathode were observed at 516 and 533 nm, respectively. The maximum brightness and external luminance efficiency of the devices fabricated with the EL polymers were found to be $411 cd/m^2$ and 0.16 cd/A, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.