DOI QR코드

DOI QR Code

Room Temperature Na/S Batteries Using a Thick Film of Na β"-Alumina Composite Electrolyte and Gel-Type Sulfur Cathode

후막 Na β"-Alumina 복합 고체 전해질 및 Gel-Type 유황 양극을 활용한 상온형 Na-S 전지의 특성 평가

  • Lee, Jinsil (Department of Advanced Material Engineering, Chungbuk National University) ;
  • Yu, Hakgyoon (Department of Energy Convergence Engineering, Cheongju University) ;
  • Lee, Younki (Department of Material Engineering and Convergence Technology, Gyeongsang National University) ;
  • Kim, Jae-Kwang (Department of Energy Convergence Engineering, Cheongju University) ;
  • Joo, Jong Hoon (Department of Advanced Material Engineering, Chungbuk National University)
  • 이진실 (충북대학교 신소재공학과) ;
  • 유학균 (청주대학교 에너지융합학과) ;
  • 이윤기 (경상대학교 나노.신소재공학부) ;
  • 김재광 (청주대학교 에너지융합학과) ;
  • 주종훈 (충북대학교 신소재공학과)
  • Received : 2020.07.07
  • Accepted : 2020.07.23
  • Published : 2020.09.01

Abstract

In this study, we introduce a Na β"-alumina composite thick film as a solid electrolyte, to reduce the resistance of electrolyte for a Na/S battery. An alumina/zirconia composite material was used to enhance the mechanical properties of the electrolyte. A solid electrolyte of about 40 ㎛ thick was successfully fabricated through the conversion and tape-casting methods. In order to investigate the effect of the surface treatment process of the solid electrolyte on the battery performance, the electrolyte was polished by dry and wet processes, respectively, and then the Na/S batteries were prepared for analyzing the battery characteristics. The battery with the dry process performed much better than the battery made with the wet process. As a result, the battery manufactured by the dry process showed excellent performance. Therefore, it is confirmed that the surface treatment process of the solid electrolyte has an important effect on the battery capacity and coulombic efficiency, as well as the interface reaction.

Keywords

References

  1. C. J. Rydh, J. Power Sources, 80, 21 (1999). [DOI: https://doi.org/10.1016/S0378-7753(98)00249-3]
  2. Z. Yang, J. Zhang, M.C.W. Kinetner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, Chem. Rev., 111, 3577 (2011). [DOI: https://doi.org/10.1021/cr100290v]
  3. I. Kim, J. Y. Park, C. H. Kim, J. W. Park, J. P. Ahn, J. H. Ahn, K. W. Kim, and H. J. Ahn, J. Power Sources, 301, 332 (2016). [DOI: https://doi.org/10.1016/j.jpowsour.2015.09.120]
  4. H. Pan, Y. S. Hu, and L. Chen, Energy Environ. Sci., 6, 2338 (2013). [DOI: https://doi.org/10.1039/C3EE40847G]
  5. C. W. Park, H. S. Ryu, K. W. Kim, J. H. Ahn, J. Y. Lee, and H. J. Ahn, J. Power Sources, 165, 450 (2007). [DOI: https://doi.org/10.1016/j.jpowsour.2006.11.083]
  6. Y. X. Wang, W. H. Lai, S. L. Chou, H. K. Liu, and S. X. Dou, Adv. Mater., 32, 1903952 (2020). [DOI: https://doi.org/10.1002/adma.201903952]
  7. T. Zhu, X. Dong, Y. Liu, Y. G. Wang, C. Wang, and Y. Y. Xia, ACS Appl. Energy Mater., 2, 5263 (2019). [DOI: https://doi.org/10.1021/acsaem.9b00953]
  8. Z. Wen, J. Cao, Z. Gu, X. Xu, F. Zhang, and Z. Lin, Solid State Ionics, 179, 1697 (2008). [DOI: https://doi.org/10.1016/j.ssi.2008.01.070]
  9. D. Kumar, S. B. Kuhar, and D. K. Kanchan. J. Energy Storage, 18, 133 (2018). [DOI: https://doi.org/10.1016/j.est.2018.04.021]
  10. S. S. Suh, C. W. Yi, and K. Kim, J. Kor. Electrochem. Soc., 15, 1 (2012). [DOI: https://doi.org/10.5229/JKES.2012.15.1.001]
  11. M. Ogawa, K. Yoshida, and K. Harada, SEI Tech. Rev., 74, 88 (2012).
  12. G. S. Kim, Electr. Electron. Mater., 30, 20 (2017).
  13. X. Lu, G. Xia, J. P. Lemmon, and Z. Yang, J. Power Sources, 195, 2431 (2010). [DOI: https://doi.org/10.1016/j.jpowsour.2009.11.120]
  14. L. Ghadbeigi, A. Szendrei, P. Moreno, T. D. Sparks, and A. V. Virkar, Solid State Ionics, 290, 77 (2016). [DOI: https://doi.org/10.1016/j.ssi.2016.04.006]
  15. X. Lu, G. Li, J. Y. Kim, K. D. Meinhardt, and V. L. Sprenkle, J. Power Sources, 295, 167 (2015). [DOI: https://doi.org/10.1016/j.jpowsour.2015.06.147]
  16. T. Ando, A. Sakuda, M. Tatsumisago, and A. Hayashi, Electrochem. Commun., 116, 106741 (2020). [DOI: https://doi.org/10.1016/j.elecom.2020.106741]
  17. G. Yamaguchi and K. Suzuki, Bull. Chem. Soc. Jpn., 41, 93 (1968). [DOI: https://doi.org/10.1246/bcsj.41.93]
  18. M. Bettman and C. R. Peters, J. Phys. Chem., 73, 1774 (1969). [DOI: https://doi.org/10.1021/j100726a024]
  19. D. Vladikova, Proc. of the International Workshop "Advanced Techniques for Energy Sources Investigation and Testing" (Sofia, Bulgaria, 2004) p. 4.
  20. L. Ghadbeigi, A. Szendrei, P. Moreno, T. D. Sparks, and A. V. Virkar, Solid State Ionics, 290, 77 (2016). [DOI: https://doi.org/10.1016/j.ssi.2016.04.006]
  21. Y. Sheng, P. Sarkar, and P. S. Nicholson, J. Mater. Sci., 23, 958 (1988). [DOI: https://doi.org/10.1007/BF01153995]
  22. W. I. Archer, R. D. Armstrong, D. P. Sellick, W. G. Bugden, and J. H. Duncan, J. Mater. Sci., 15, 2066 (1980). [DOI: https://doi.org/10.1007/BF00550633]
  23. X. L. Wei, Y. Xia, X. M. Liu, H. Yang, and X. D. Shen, Electrochim. Acta, 136, 250 (2014). [DOI: https://doi.org/10.1016/j.electacta.2014.05.096]
  24. J. R. Dygas, G. Fafilek, and M. W. Breiter, Solid State Ion., 119, 115 (1999). [DOI: https://doi.org/10.1016/S0167-2738(98)00492-5]
  25. N. Chawla and M. Safa, Electronics, 8, 1201 (2019). [DOI: https://doi.org/10.3390/electronics8101201]