• 제목/요약/키워드: catechol derivatives

검색결과 28건 처리시간 0.025초

바이러스성출혈성패혈증 바이러스 감염에 대한 3-Methyl Catechol의 항바이러스성 활성 (Anti-Viral Hemorrhagic Septicemia Virus (VHSV) Activity of 3-Methyl Catechol)

  • 조세영;민나래;김영오;김두운
    • 한국수산과학회지
    • /
    • 제54권5호
    • /
    • pp.644-651
    • /
    • 2021
  • Viral hemorrhagic septicemia virus (VHSV) is a fish pathogen responsible for causing enormous economic loss to the aquaculture industry not only in Korea but worldwide. Thus, it is necessary to identify natural compounds that can be used to control the spread of VHSV. In this study, the anti-VHSV activities of five catechol derivatives, i.e., catechol, pyrogallol, 3-methyl catechol, veratrole, and 3-methyl veratrole-extracted from green tea-were assessed. The antiviral activities of these derivatives were found to be dependent on their structure, i.e., the hydroxyl or methoxyl group and their substituent groups-on the benzene ring. Catechol, pyrogallol, and 3-methyl catechol exhibited relatively high 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities than veratrole, and 3-methyl veratrole. Moreover, 3-methyl catechol harboring a methyl substituent group increased the viability of the virus-infected cells and resulted in a 2.86 log reduction in the gene copies of VHSV N (per mL) in real-time PCR analysis. In conclusion, the catechol derivatives harboring hydroxyl groups in their benzene ring exhibited higher antioxidant activities than those harboring the methoxyl groups. However, catechol derivatives with a methyl group at the 3'-position of the benzene ring exhibited higher antiviral activity than those harboring a hydroxyl group. To our knowledge, this is the first study to evaluate the relationship between the structure and the anti-VHSV activity of catechol derivatives.

구조-활성 상관관계. 5-Lipoxygenase의 저해제인 Catechol류에 관한 이론적 연구 (Structure-Activity Relationship. A Theoretical Study of Catechol Derivatives as 5-Lipoxygenase Inhibitor)

  • 박성식;김상윤;정덕영;여수동
    • 대한화학회지
    • /
    • 제39권9호
    • /
    • pp.741-748
    • /
    • 1995
  • 5-Lipoxyhenase의 저해제인 catechol류에 대한 구조-활성관계를 검토하였다. Catechol 유사체의 활성자리와 수용체가 작용하는 약물-수용체 상호작용 모델을 설정하여 가하학적, 전기적 파라미터를 구하여 생리활성과의 상관관계를 분석, 다중회귀분석을 실시하였다.

  • PDF

Gluconic acid의 발효에 관한 연구(제1보) 발효조중 산소이동에 미치는 Phenol 유도분 및 Catechol 유도분의 영향 (THE KINETIC STUDIES OF GLUCONIC ACID FERMENTATION (PART 1) Effect of Phenol and Catechol Derivatives on Oxygen Transfer in the Fermentation)

  • 이근태;이경희
    • 한국수산과학회지
    • /
    • 제11권4호
    • /
    • pp.205-211
    • /
    • 1978
  • The effect of phenol derivatives (guaiacol, vanillin, o-vanillin, eugenol) and catechol derivatives (pyrogallol, resoicinol) to enhance the volumetric oxygen transfer coefficient, in the aerobic fermentation was studies. Guaiacol, vanillin, o-vanillin, pyrogallol and resorcinol revealed to enchance the volumetric oxygen transfer coefficient, and eugenol had no such ability. The enhancement of the oxygen transfer ability is probably due to the formation of the charge transfer complex by the derivatives and oxygen molecules.

  • PDF

The Molecular Modeling of Novel Inhibitors of Protein Tyrosine Phosphatase 1B Based on Catechol by MD and MM-GB (PB)/SA Calculations

  • Kocakaya, Safak Ozhan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1769-1776
    • /
    • 2014
  • Binding modes of a series of catechol derivatives such as protein tyrosine phosphatase 1B (PTP1B) inhibitors were identified by molecular modeling techniques. Docking, molecular dynamics simulations and free energy calculations were employed to determine the modes of these new inhibitors. Binding free energies were calculated by involving different energy components using the Molecular Mechanics-Poisson-Boltzmann Surface Area and Generalized Born Surface Area methods. Relatively larger binding energies were obtained for the catechol derivatives compared to one of the PTP1B inhibitors already in use. The Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) free energy decomposition analysis indicated that the hydroxyl functional groups and biphenyl ring system had favorable interactions with Met258, Tyr46, Gln262 and Phe182 residues of PTP1B. The results of hydrogen bound analysis indicated that catechol derivatives, in addition to hydrogen bonding interactions, Val49, Ile219, Gln266, Asp181 and amino acid residues of PTP1B are responsible for governing the inhibitor potency of the compounds. The information generated from the present study should be useful for the design of more potent PTP1B inhibitors as anti-diabetic agents.

Amperometric Detection of Some Catechol Derivatives and o-aminophenol Derivative with Laccase Immobilized Electrode: Effect of Substrate Structure

  • Quan De;Shin Woonsup
    • 전기화학회지
    • /
    • 제7권2호
    • /
    • pp.83-88
    • /
    • 2004
  • [ $DeniLite^{TM}$ ] laccase immobilized Pt electrode was used for amperometric detection of some catechol derivatives and o-aminophenol (OAP) derivative by means of substrate recycling. In case of catechol derivatives, the obtained sensitivities are 85, 79 and $57 nA/{\mu}M$ with linear ranges of $0.6\~30,\;0.6\~30\;and\; 1\~25 {\mu}M$ and detection limits (S/N=3) of 0.2, 0.2 and $0.3{\mu}M$ for 3,4-dihydroxycinnaminic acid (3,4-DHCA), 3,4-dihydroxybenzoic acid (3,4-DHBA) and 3,4-dihydroxyphenylacetic acid (3,4-DHPAA), respectively. In case of OAP derivative, the obtained sensitivity is $237 nA/{\mu}M$ with linear range of $0.2\~15{\mu}M$ and detection limit of 70 nM for 2-amino-4-chlorophenol (2-A-4-CP). The response time $(t_{90\%})$ is about 2 seconds for each substrate and the long-term stability is around 40-50days for catechol derivatives and 30 days for 2-A-4-CP with retaining $80\%$ of initial activity. The optimal pHs of the sensor for these substrates are in the range of 4.5-5.0, which indicates that stability of the enzymatically oxidized product plays a very important role in substrate recycling. The different sensitivity of the sensor for each substrate can be explained by the electronic effect of the sugstituent on the enzymatically oxidized form.

Adamantyl Benzamide 유도체의 미백효과 (Whitening Effects of Adamantyl Benzamide Derivatives)

  • 백흥수;안수미;우병영;조영석;최수정;노호식;변경희;신송석;박영호;주영협
    • 대한화장품학회지
    • /
    • 제39권2호
    • /
    • pp.127-132
    • /
    • 2013
  • Polyhydroxylated benzamide 유도체의 구조변화에 따른 미백효과의 상관관계를 고찰하였다. Adamantyl benzamide 유도체에서 B ring 부분의 치환기가 catechol (3,4-dihydroxyphenyl)인 경우 우수한 멜라닌 생성 저해활성을 보였으나, mono-hydroxyphenyl (3-OH 또는 4-OH)이거나 3,4-dimethoxyphenyl인 경우에 그 활성이 감소하거나 없어졌다. 따라서 catechol unit이 멜라닌 생성 저해에 중요한 인자임 을 알 수 있었다. 그리고 A-ring부분의 2-OH의 존재여부는 활성에 큰 영향을 주지는 않았고, A-ring과 B-ring을 연결하는 탄소사슬의 길이 역시 멜라닌 생성저해에 큰 영향을 주는 요소는 아니었다.

페닐티오우레아 유도체와 카테콜 산화효소와의 상호작용에 대한 분자역학적 모의실험 (The Interaction of Phenylthiourea Derivatives as Catechol Oxidase Inhibitors by Molecular Mechanics Simulation)

  • 박경래
    • 약학회지
    • /
    • 제60권2호
    • /
    • pp.78-84
    • /
    • 2016
  • N-Phenylthiourea derivatives and catechol oxidase receptor complex was studied using molecular mechanics method. The starting structure was adopted from the protein databank and the calculation of energy minimization and molecular dynamics was performed with AMBER package. The molecular dynamics showed that the simulation time span of 20 ns was long enough to observe the interaction profile and stationary ligand-receptor configuration in the complex. The conformation of the ligand was related to the interaction to the receptor and the efficacy was also interpreted in this context.

Synthesis and Biological Studies of Catechol Ether Type Derivatives as Potential Phosphodiesterase (PDE) IV Inhibitors

  • Rhee, Chung K.;Kim, Jong-Hoon;Suh, Byung-Chul;Xiang, Myung-Xik;Youn, Yong-Sik;Bang, Won-Young;Kim, Eui-Kyung;Shin, Jae-Kyu;Lee, Youn-Ha
    • Archives of Pharmacal Research
    • /
    • 제22권2호
    • /
    • pp.202-207
    • /
    • 1999
  • New series of catechol ether type derivatives 5, 6 have been synthesized and applied to biological tests. Even though it is ap preliminary data, some of our target molecules show the promising result against PDE IV inhibition. SAR and biological studies with studies with synthetic compounds will be discussed in detail.

  • PDF

Synthesis and Biological Studies of A Novel Series of Catechol Ether Type Derivatives as Potential Phosphodiesterase(PDE) IV Inhibitors

  • Lee, Jae-Mok;Lee, Koun-Ho;Kim, Jong-Hoon;Song, Seog-Beom;Chun, Hyung-Ok;Yeon, Kyu-Jeong;Kwon, Soon-Ji
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.348.1-348.1
    • /
    • 2002
  • We synthesized various catechol ether type derivatives substituted by the hydrazine moiety and evaluated for their ability to inhibit PDE Ⅳ (Phosphodiesterase Ⅳ). These new compounds were synthesized from 4-methoxy-3-hydroxy benzaldehyde through 5 or 7 steps. Some of them have similar or more potent inhibitory activity against PDE Ⅳ than known PDE Ⅳ inhibitor. Ariflo (SB 207499). Structure activity relationship (SAR) and biological studies of described compounds will be discussed in detail. (omitted)

  • PDF

Antioxidative Activity of Urushiol Derivatives from the Sap of Lacquer Tree (Rhus vernicifera Stokes)

  • ///
    • 한국자원식물학회지
    • /
    • 제10권3호
    • /
    • pp.227-230
    • /
    • 1997
  • The authors isolated four olefinic catechols, commonly referred to as urushiol, from the sap of Korean lacquer tree(Rhus vernicifera STOKES) with stronger antioxidative activities than $\alpha-tocopherol$. The hexane extract with a free radical scavenging activity was purified by silica and ODS gel column chromatography. The active compounds were identified by MS and $^1H-NMR$ as 3-[8'(Z),11'(Z),14'-pentadecatrienyl]catechol, 3-[8'(Z),11'(Z)-pentadecadienyl]catechol, 3-[8'(Z)-pentadecenyl] catechol, and 3-pentadecylcatechol. All of these compounds showed strong free radical scavenging activities on 1,1-diphenyl-2-picrylhydrazyl(DPPH) radical, in which 3-pentadecylacatechol exhibited the highest activity ($IC_{50}$: $1.2{\mu}g/ml$). They also showed a significant inhibitory activity on lipid peroxidation ($IC_{50}$: 2.1 - 3.5 ${\mu}g/ml$). The antioxidative activity of 3-pentadecylcatechol on DPPH radical and lipid peroxidation is approximately two times greater than that of $\alpha$-tocopherol. The results suggest that the urushiol derivatices may contribute to the preservative characteristics effective against oxidative stress and could be a good source for industrial applications including a coating material.

  • PDF