DOI QR코드

DOI QR Code

Amperometric Detection of Some Catechol Derivatives and o-aminophenol Derivative with Laccase Immobilized Electrode: Effect of Substrate Structure

  • Quan De (Department of Chemistry, Sogang University) ;
  • Shin Woonsup (Department of Chemistry, Sogang University)
  • Published : 2004.05.01

Abstract

[ $DeniLite^{TM}$ ] laccase immobilized Pt electrode was used for amperometric detection of some catechol derivatives and o-aminophenol (OAP) derivative by means of substrate recycling. In case of catechol derivatives, the obtained sensitivities are 85, 79 and $57 nA/{\mu}M$ with linear ranges of $0.6\~30,\;0.6\~30\;and\; 1\~25 {\mu}M$ and detection limits (S/N=3) of 0.2, 0.2 and $0.3{\mu}M$ for 3,4-dihydroxycinnaminic acid (3,4-DHCA), 3,4-dihydroxybenzoic acid (3,4-DHBA) and 3,4-dihydroxyphenylacetic acid (3,4-DHPAA), respectively. In case of OAP derivative, the obtained sensitivity is $237 nA/{\mu}M$ with linear range of $0.2\~15{\mu}M$ and detection limit of 70 nM for 2-amino-4-chlorophenol (2-A-4-CP). The response time $(t_{90\%})$ is about 2 seconds for each substrate and the long-term stability is around 40-50days for catechol derivatives and 30 days for 2-A-4-CP with retaining $80\%$ of initial activity. The optimal pHs of the sensor for these substrates are in the range of 4.5-5.0, which indicates that stability of the enzymatically oxidized product plays a very important role in substrate recycling. The different sensitivity of the sensor for each substrate can be explained by the electronic effect of the sugstituent on the enzymatically oxidized form.

Keywords

References

  1. Y. Sun, H. Cui, Y. Li and X. Lin, Talanta, 53, 661 (2000) https://doi.org/10.1016/S0039-9140(00)00550-6
  2. A. L. Ghindilis, V. P. Gavrilova and A. I. Yaropolov, Biosens. Bioelectron., 7, 127 (1992) https://doi.org/10.1016/0956-5663(92)90017-H
  3. F. Lisdat, U. Wollenberger, A. Markower, H. Hortnagl, D. Pfeiffer and F. W. Scheller, Biosens. Bioelectron., 12(12), 1199 (1997) https://doi.org/10.1016/S0956-5663(97)00098-5
  4. B Haghighi, L. Gorton, T. Ruzgas and L. J. Jonsson, Anal. Chim. Acta, 487, 3 (2003) https://doi.org/10.1016/S0003-2670(03)00077-1
  5. F. Lisdat, W. O. Ho, U. Wollenberger, F. W. Scheller, T. Richter and U. Billitewski, Electroanaiysis, 10(12), 803 (1998) https://doi.org/10.1002/(SICI)1521-4109(199809)10:12<803::AID-ELAN803>3.0.CO;2-3
  6. A. Lindgren, L. Stoica, T. Ruzgas, A. Ciucu and L. Gorton, Analyst, 124, 527 (1999) https://doi.org/10.1039/a808538b
  7. G. Marko-Varga, J. Emneus, L. Gorton and T, Ruzgas, Trends Anal. Chem., 14(7), (1995) 319 https://doi.org/10.1016/0165-9936(95)97059-A
  8. S. Zhao and J. H. T. Luong, Anal. Chim. Acta, 327, 235 (1996) https://doi.org/10.1016/0003-2670(96)00112-2
  9. C. Saby and J. H. T. Luong, Electroanalysis, 10(1), 7 (1998) https://doi.org/10.1002/(SICI)1521-4109(199801)10:1<7::AID-ELAN7>3.0.CO;2-J
  10. T. Ruzgas, E. Csbregi, J. Emneus, L. Gorton and G. Marko-Varga, Anal. Chim. Acta, 330, 123 (1996) https://doi.org/10.1016/0003-2670(96)00169-9
  11. B. Reinhammar, in: Copper proteins & copper enzymes (Ed: L. Rene), Chap. 1, Vol. III, CRC Press (1984)
  12. E. I. Solomon, U. M. Sundaram and T. E. Machonkin, Chem. Rev., 96, 2563 (1996) https://doi.org/10.1021/cr950046o
  13. C. F. Thurston, Microbiology, 140, 19 (1994) https://doi.org/10.1099/13500872-140-1-19
  14. A. I. Yaropolov, O. V. Skorobogatko, S. S. Vartanov and S. D. Varfolomeyev, Appl. Biochem. Biotech., 49, 257 (1994) https://doi.org/10.1007/BF02783061
  15. T. Wasa, K. Akimoto, T. Yao and S. Murao, Nippon Kagaku Kaishi, 9, 1398 (1984)
  16. D. Quan, Y. Kim and W. Shin, J. Electroanal. Chem., 561, 181 (2004) https://doi.org/10.1016/j.jelechem.2003.08.003
  17. D. Quan, Y. Kim, K. Yoon and W. Shin, Bull. Korean Chem. Soc., 23, 385 (2002) https://doi.org/10.5012/bkcs.2002.23.3.385
  18. D. Quan and W. Shin, Materi. Sci. Eng. C, 24, 113 (2004) https://doi.org/10.1016/j.msec.2003.09.036
  19. D. Quan and W. Shin, Electroanalysis, in press
  20. Y. Kim, N. Cho, T. Eom and W. Shin, Bull. Korean Chem. Soc., 23, 985 (2002) https://doi.org/10.5012/bkcs.2002.23.7.985
  21. F. Xu, W. Shin, S. H. Brown, J. Wahleithner, U. M. Sundaram and E. I. Solomon, Biochim. Biophys. Acta, 1292, 303 (1996) https://doi.org/10.1016/0167-4838(95)00210-3
  22. J. R. Lenhard and R. W. Murray, J. Electroanal. Chem., 78, 195 (1977) https://doi.org/10.1016/S0022-0728(77)80442-7
  23. W. G. C. Forsyth, V. C. Quesnel, J. B. Roberts, Biochim. Biophys. Acta, 37(2), 322 (1960) https://doi.org/10.1016/0006-3002(60)90240-7
  24. C. R. Dawson, and W. B. Tarpley, Ann. N. Y. Acad. Sci., 100(Pt. 2), 937 (1963) https://doi.org/10.1111/j.1749-6632.1963.tb42899.x
  25. R. Z. Kazandjian and A. M. Klibanov, J. Am. Chem. Soc., 107, 5448 (1985) https://doi.org/10.1021/ja00305a020
  26. J. Davis, D. H. Vaughan and M. F. Cardosi, Electrochim. Acta, 43(3-4), 291 (1998) https://doi.org/10.1016/S0013-4686(97)00086-8
  27. S. Kobayashi and H. Higashimura, Prog. Polym. Sci., 28, 1015 (2003) https://doi.org/10.1016/S0079-6700(03)00014-5
  28. H. G. Viehe, Z. Janousek, R. Merenyi and L. Stella, Ace. Chem. Res., 18, 148(1985) https://doi.org/10.1021/ar00113a004
  29. W. P. Price, Jr., R. Edens, D. L. Hendrix and S. N. Deming, Anal. Biochem., 93, 233 (1979) https://doi.org/10.1016/S0003-2697(79)80143-8
  30. T. Ishimitsu, S. Hirose and H. Sakurai, Talanta, 24, 555 (1977) https://doi.org/10.1016/0039-9140(77)80049-0
  31. V. Ducros, A. M. Brzozowski, K. S. Wilson, S. H. Brown, P. Ostergaard, P. Schneider, D. S. Yaver, A. H. Pedersen and G. J. Davis, Nature struct Bioi., 5(4), 310 (1998) https://doi.org/10.1038/nsb0498-310
  32. V. D. Parker, Anodic oxidation of Amines, in: M. M. Baizer (Ed), Organic Electrochemistry-An Introduction and a Guide, Chap. 14, Marcel Dekker, Inc., New York (1973)
  33. S. Campuzano, B. Serra, M. Pedrero, F. J. Manuel de Villena and J. M. Pingarron, Anal. Chim. Acta, 494, 187 (2003) https://doi.org/10.1016/S0003-2670(03)00919-X
  34. J. M. Vandenbelt, C. Henrich and S. G. Vandenberg, Anal. Chem., 25(4), 726 (1954)
  35. D. C. Harris, Quantitative chemical analysis, 5th Ed., AP 15, W. H. Freeman and Company, New York (1999)