DOI QR코드

DOI QR Code

Proton Conductivity and Methanol Permeability of Sulfonated Polysulfone/PPSQ Composite Polymer Electrolyte Membrane

설폰화된 폴리설폰/PPSQ 유-무기 복합 전해질막의 수소이온 전도도 및 메탄올 투과 특성

  • Kwon Jeongdon (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee Changjin (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kang Yongku (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 권정돈 (한국화학연구원 화학소재연구부) ;
  • 이창진 (한국화학연구원 화학소재연구부) ;
  • 강영구 (한국화학연구원 화학소재연구부)
  • Published : 2004.05.01

Abstract

Sulfonated polysulfone (SPSF) with poly(phenylmethyl silsesquioxane, PPSQ) composite polymer electrolyte membranes were prepared and their proton conductivity, water uptake and methanol permeability of membranes were characterized. By controlling the ratio of $(CH_3)_3SCI\;and\;CISO_3H$ and reaction time, SPSF with $37\~75\%$ degree of sulfonation were synthesized. The increase of sulfonate groups in the base polymer resulted in the increase of the water uptake in the membranes as well as methanol permeability. Composite membranes were prepared by casting of DMF solution of SPSF and PPSQ. The proton conductivity of the composite membrane at room temperature was $2.8\times10^{-3}\~4.9\times10^{-2}S/cm.$ The increase of PPSQ contents in composite membranes resulted in a decrease in water uptake and methanol permeability. Composite membranes containing $5\%$ PPSQ did not make a significant effect on the proton conductivity nO methanol permeability compared with that of pristine SPSF, but a significant decrease of water uptake was observed.

설폰화된 폴리설폰 (sulfonated polysulfone, SPSF)과 Poly(phenylmethyl silsequioxane) (PPSQ)의 유무기 복합 전해 질막을 제조하여 이온전도도와 메탄을 투과 특성을 조사하였다 클로로트리메틸실란과 클로로설폰산의 반응 몰비와 반응시간를 변화시켜 설폰화도가 $37\~75\%$인 SPSF를 합성하였다. SPSF/PPSQ복합 전해막은 SPSF와 PPSQ를 DMF에 용해하여 캐스팅하는 방법으로 제조하였다 이 복합 전해질막의 수소 이온 전도도는 상온에서 $2.8\times10^{-3}\~4.9\times10^{-2}S/cm$이었으며 설폰화도가 증가할수록 전도도는 증가하였다. 제조된 설폰화된 폴리설폰 복합 전해질막의 메탄을 투과도는 이온전도도와 설폰화도에 비례하여 증가하였으며, PPSQ의 함량이 커질수록 메탄을 투과도가 비례적으로 감소하는 것을 확인할 수 있었다. 약 $5wt\%$ PPSO론 포함한 복합 전해질막의 이온전도도 및 메탄을 투과도는 SPSF에 비교하여 거의 동일하지만 함수율을 크게 감소시키는데 효과적이었다.

Keywords

References

  1. G. Hoogers in 'Fuel Cell Technology', Ed. by G. Hoogers, p9-1, CRC Press, Boca Raton. FL. (2002)
  2. S. R. Narayanan, T. I. Valdez, and N. Rohatgi in 'Handbook of Fuel Cells', Eds. By W. Vielstich, A. Lamm, and H. A. Gasteiger, p894, John Wiley & Sons, West Sussex (2003)
  3. A. Kuver. I. Vogel, W. Vielstich, J. Power Sources 52, 77(1994) https://doi.org/10.1016/0378-7753(94)01943-6
  4. J. Won, S. W. Choi, Y. S. Kang, H. Y. Ha, I. H. Oh, H. S. Kim, K. T. Kim, and W. H. Jo, J. Memb. sci., 214, 245 (2003) https://doi.org/10.1016/S0376-7388(02)00555-0
  5. L.J. Hobson, H. Ozu, M. Yamaguchi, and S. Hayase, J. Electrochem. Soc., 148, Al185 (2001) https://doi.org/10.1149/1.1353579
  6. J. Roziere and D.J. Jones, Annu. Rev. Mater. Res, 33, 503 (2003) https://doi.org/10.1146/annurev.matsci.33.022702.154657
  7. M. Rikukawa and K. Sanui, Prog. Polym. Sci., 25, 1463 (2000) https://doi.org/10.1016/S0079-6700(00)00032-0
  8. C. Manea and M. Mulder, J. Membr. Sci, 206, 443 (2002) https://doi.org/10.1016/S0376-7388(01)00787-6
  9. F. Wang, M. Hickner, Y. S. Kim. T. A. Zawodzinski, and J. E. McGrath, J. Membr. Sci., 197, 231 (2002) https://doi.org/10.1016/S0376-7388(01)00620-2
  10. B. Yang and A. Manthiram, Electrochem. Solid State Lett., 6, A229 (2003) https://doi.org/10.1149/1.1613073
  11. B. Smitha, S. Sridhar, and A. A. Khan, J. Membr. Sci., 225, 63 (2003) https://doi.org/10.1016/S0376-7388(03)00343-0
  12. J. Fang, X. Guo, S. Harada, T. Watari, K. Tanaka, H. Kita, and K. Okamoto, Macromolecules, 35, 9022 (2002) https://doi.org/10.1021/ma020005b
  13. K. Miyatake, H. Zhou, H. Uchida, and. M. Watanabe, Chem. Comm., 368 (2003)
  14. D.J. Jones and J. Roziere, J Membr. Sci., 185,41 (2001) https://doi.org/10.1016/S0376-7388(00)00633-5
  15. B. Kumar and J.P. Fellner, J. Power Sources, 123, 132 (2003) https://doi.org/10.1016/S0378-7753(03)00530-5
  16. G. Alberti and M. Casciola, Solid State Ionics, 145, 3 (2001) https://doi.org/10.1016/S0167-2738(01)00911-0
  17. P. Dirnitrova, K.A. Friedrich, B. Voget, and U. Stimming, J. Electroanal. Chem., 532, 75 (2002) https://doi.org/10.1016/S0022-0728(02)01006-9
  18. P. Staiti and M. Minutoli, J. Power Sources, 90, 231 (2000) https://doi.org/10.1016/S0378-7753(00)00401-8
  19. F. Lufrano, G. Squadrito, A. Patti, and E. Passalacqua, J. Appl. Polym. Sci., 77, 1250 (2000) https://doi.org/10.1002/1097-4628(20000808)77:6<1250::AID-APP9>3.0.CO;2-R
  20. R. Nolte, K. Ledjeff, M. Bauer, and R. Mulhaupt, J. Membrane Sci., 83, 211 (1993) https://doi.org/10.1016/0376-7388(93)85268-2
  21. Noshay, and L.M. Robeson, J. App. Polym. Sci., 20, 1885 (1976) https://doi.org/10.1002/app.1976.070200717
  22. J. J. Sumner, S. E. Creager, J. J. Ma, and D. D. DesMarteau, J. Electrochem. Soc., 145, 107 (1998) https://doi.org/10.1149/1.1838220
  23. B. Ruffrnann, H. Silva, B. Schulte, and S. P. Nunes, Solid State Ionics, 162-163, 269 (2003) https://doi.org/10.1016/S0167-2738(03)00240-6

Cited by

  1. Liquid Uptake and Methanol Transport Behaviour of PVDF/SPEEK/TiO2Hybrid Membrane for DMFC vol.8, pp.4, 2005, https://doi.org/10.5229/JKES.2005.8.4.177