• Title/Summary/Keyword: catalytic factor

Search Result 156, Processing Time 0.024 seconds

Heterogeneous Catalysts for Hydrogen Generation Based on Ru-Incorporated Hydroxyapatite

  • Jaworski, Justyn Wayne;Kim, Dae-Hyun;Jung, Kyeong-Mun;Kim, So-Hue;Jeong, Jong-Ok;Jeon, Hyo-Sang;Min, Byoung-Koun;Kwon, Ki-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.319-319
    • /
    • 2011
  • Hydrolysis of sodium borohydride provides a safe and clean approach to hydrogen generation. Having the proper catalytic support for controlling this reaction is therefore a valuable technology. Here we demonstrate the capability of hydroxyapatite as a novel catalytic support material for hydrogen generation. Aside from being inexpensive and durable, we reveal that Ru ion exchange on the HAP surface provides a highly active support for sodium borohydride hydrolysis, exemplifying a high total turnover number of nearly 24,000 mol $H_2$/ mol Ru. Moreover, we observe that the RuHAP support exhibits a high catalytic lifetime of approximately one month upon repeated exposure to $NaBH_4$ solutions. In addition to examining surface area effects, we also identified the role of complex surface morphology in enhancing hydrolysis by the catalytic transition metal covered surface. Particularly, we found that a polycrystalline RuHAP catalytic support exhibits shorter induction times for the initial bubble formation as well as increased hydrogen generation rates as compared to a single crystal supports. The independent factor of a complex surface morphology is believed to provide enhanced sites for gas release during the initial stages of the reaction. By demonstrating the ability to shorten induction time and enhance catalytic activity through changes in surface morphology and Ru content, we find it feasible to further explore this catalyst support in the construction of a practical hydrogen generator.

  • PDF

Thermal Stability of $MnOx-WO_3-TiO_2$ Catalysts Prepared by the Sol-gel Method for Low-temperature Selective Catalytic Reduction

  • Sin, Byeong-Gil;Lee, Hui-Su
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.28.2-28.2
    • /
    • 2011
  • The selective catalytic reduction (SCR) of NOx by $NH_3$ is well known as one of the most convenient, efficient, and economical method to prevent NOx emission in flue gas from stationary sources. The degradation of the reactivity is the obstacle for its real application, since high concentrations of sulfur dioxide and thermal factor would deactivate the catalyst. It is necessary to develop high stability of catalysts for low-temperature SCR. Among the transition metal oxides, $WO_3$ is known to exhibit high SCR activity and good thermal stability. The $MnOx-WO_3-TiO_2$ catalysts prepared by sol-gel method with various $WO_3$ contents were investigated for low-temperature SCR. These catalysts were observed in terms of micro-structure and spectroscopy analyses. The $WO_3$ catalyst as a promoter is used to enhance the thermal stability of catalyst since it increases the phase transition temperature of $TiO_2$ support. It was found that the addition of tungsten oxides not only maintained the temperature window of NO conversion but also increased the acid sites of catalyst.

  • PDF

Synthesis of diameter-controlled carbon nanotubes via structural modification of Al2O3 supporting layer

  • Kim, Soo-Youn;Song, Woo-Seok;Kim, Min-Kook;Jung, Woo-Sung;Choi, Won-Chel;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.286-286
    • /
    • 2010
  • The lack of homogeneously sized single-walled carbon nanotubes (SWNTs) hinders their many applications because properties of SWNTs, in particular electrical conduction, are highly dependent on the diameter and chirality. Therefore, the preferential growth of SWNTs with predetermined diameters is an ultimate objective for applications of SWNTs-based nanoelectronics. It has been previously emphasized that a catalyst size is the one crucial factor to determine the CNTs diameter in chemical vapor deposition (CVD) process, giving rise to several attempts to obtain size-controllable catalyst by diverse methods, such as solid supported catalyst, metal-containing molecular nanoclusters, and nanostructured catalytic layer. In this work, diameter-controlled CNTs were synthesized using a nanostructured catalytic layer consisting of Fe/Al2O3/Si substrate. The CNTs diameter was controlled by structural modification of Al2O3 supporting layer, because Al2O3 supporting layer can affect agglomeration phenomenon induced by heat-driven surface diffusion of Fe catalytic nanoparticles at growth temperature.

  • PDF

CATALYTIC MEMBRANE REACTOR FOR DEYDROGENATION OF WATER VIA GAS-SHIFT

  • Tosti, Silvano;Castelli, Stefano;Violante, Vittorio
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.43-47
    • /
    • 1999
  • Pd-ceramic composite membranes and catalytic membrane reactors(CMR) have been studied for hydrogen purification and recovery in th fusion reactor fuel cycle. The development of techniques for coating microporous ceramic tubes with Pd and Pd/Ag layers is described: composite membranes have been produced by electroless deposition (Pd/Ag film of 10-20${\mu}{\textrm}{m}$) and rolling of thin metal sheet (Pd and Pd/ Ag membranes of 50-70 ${\mu}{\textrm}{m}$). Experimental results on electroless membranes showed that the metallic film presented some defects and the membranes had not complete hydrogen selectivity . Then the catalytic membrane reactors with electroless membranes can be applied for some industrial processes that do not require a complete separation of the hydrogen (i.e. in the dehydrogenation of hydrocarbons). The rolled thin Pd/Ag membranes separated the hydrogen from the other gas with a complete selectivity and exhibited a slightly larger (about a factor 1.7) mass transfer resistance with respect to the electroless membranes. Experimental tests confirmed the good performances in terms of durability.

  • PDF

Evaluation of NOx Reduction Efficiency and Emission Factor from Large Combustion Facilities in Seoul (서울지역 대형연소시설에서의 질소산화물 제거효율과 배출계수 산정)

  • 신진호;오석률;김정영;전재식;신정식
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.2
    • /
    • pp.27-33
    • /
    • 2003
  • This survey was performed to investigate the NOx emission factors at 3 Municipal Solid Waste Incinerators(MSWI) and 5 Power generation boilers in Seoul. The NOx concentrations were measured before and after control systems. The results were as follows. 1) The NOx reduction efficiencies of Selective Catalytic Reduction (SCR) using ammonia as reducing agent ranged from 53.7% to 89.9%. The NOx reduction efficiencies of SCR using methanol as reducing agent, Non- Selective Catalytic Reduction (NSCR) using ethanol as reducing agent and low-NOx burner were 20.8%, 29.1% and 24.7%, respectively. 2) The NOx emission factors at A-1, A-2 and A-3 facilities of MSWI were 0.786, 0.127 and 0.594 kg Nox/ton fuel, respectively. The factors of A-1 and A-3 facilities were higher than the average value of Korea. 3) The NOx emission factors at B-1, B-2, B-3, B-4 and B-5 facilities of Power generation boiler were 2.109, 0.726, 4.106, 8.378 and 5.168 kg Nox/ton fuel, respectively. The factors of B-4 and B-5 facilities were higher than the average value of Korea.

Galangin Activates the ERK/AKT-Driven Nrf2 Signaling Pathway to Increase the Level of Reduced Glutathione in Human Keratinocytes

  • Hewage, Susara Ruwan Kumara Madduma;Piao, Mei Jing;Kang, Kyoung Ah;Ryu, Yea Seong;Fernando, Pattage Madushan Dilhara Jayatissa;Oh, Min Chang;Park, Jeong Eon;Shilnikova, Kristina;Moon, Yu Jin;Shin, Dae O;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.427-433
    • /
    • 2017
  • Previously, we demonstrated that galangin (3,5,7-trihydroxyflavone) protects human keratinocytes against ultraviolet B (UVB)-induced oxidative damage. In this study, we investigated the effect of galangin on induction of antioxidant enzymes involved in synthesis of reduced glutathione (GSH), and investigated the associated upstream signaling cascades. By activating nuclear factor-erythroid 2-related factor (Nrf2), galangin treatment significantly increased expression of glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS). This activation of Nrf2 depended on extracellular signal-regulated kinases (ERKs) and protein kinase B (AKT) signaling. Inhibition of GSH in galangin-treated cells attenuated the protective effect of galangin against the deleterious effects of UVB. Our results reveal that galangin protects human keratinocytes by activating ERK/AKT-Nrf2, leading to elevated expression of GSH-synthesizing enzymes.

Numerical Analysis for the Flow Uniformity in the LP-SCR Reactor (LP SCR 반응기 내 유동 균일도 개선을 위한 해석적 연구)

  • Um, Hyung Sik;Kim, Gun Ho;Kim, Dae Hee;Kim, Kyu Jong;Kim, Jung Rae
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.61-63
    • /
    • 2015
  • In the low pressure selective catalytic reduction (LP SCR) system, the uniformity of both ammonia concentration and exhaust gas flow at the SCR catalyst layer are important design factor for the efficient SCR-deNOx performance. According to the shape of the guide vane and static mixer, numerical simulations were conducted to analyze flow patterns and finally to find out the appropriate alternative for uniform flow at the front of catalyst in the real scale LP SCR reactor. The variations of gas velocity and ammonia concentration were quantitatively evaluated. Based on the present results, the shape was devised to satisfy the design criteria.

  • PDF

Activity and Characteristics of Cu-Mn Oxide Catalysts Supported on γ-Al2O3 (γ-Al2O3에 담지된 Cu-Mn 산화물 촉매의 활성 및 특성)

  • Kim, Hye-jin;Choi, Sung-Woo;Lee, Chang-Seop
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.193-199
    • /
    • 2006
  • The catalytic oxidation of toluene over $-Al_2O_3$ supported copper-manganese oxide catalysts in the temperature range of $160-280^{\circ}C$ was investigated by employing a fixed bed flow reactor. The catalysts were characterized by BET, scanning electron microscopy (SEM), temperature-programmed reduction(TPR), temperature-programmed oxidation(TPO), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction(XRD) techniques. Catalytic oxidation of toluene was achieved at the below $280^{\circ}C$, and the optimal content of copper and manganese in the catalyst was found to be 15.0 wt%Cu-10.0 wt%Mn. From the TPR/TPO and XPS results, the redox peak of 15 Cu-10 Mn catalyst shifted to the lower temperature, and the binding energy was shifted to the higher binding energy. Furthermore, It is considered that $Cu_{1.5}Mn_{1.5}O_4$ is superior to Mn oxides and CuO in the role as active factor of catalysts from the XRD results and also catalytic activities are dependent on the redox ability and high oxidation state of catalysts.

Effect of Active Metal Loading on Catalytic Activity of V2O5/TiO2 Catalysts (V2O5/TiO2 촉매의 활성금속 함량이 촉매 활성에 미치는 영향)

  • Jang, Younghee;Kim, Sung Chul;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.482-487
    • /
    • 2022
  • In this study, the activity test and characterization were performed to evaluate the hydrogen sulfide removal characteristics using a V/TiO2 catalyst at room temperature. The optimal vanadium loading was 10 wt%, and the durability was greater than 60 minutes at 60~80% relative humidity. The Brunauer-Emmett-Teller (BET) surface area and raman spectroscopy results confirmed that the structure of the vanadium site exposed to the surface was a dominant factor in catalyst activity. From Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray crystallography (XRD) analyses, it was found that sulfur can be accumulated on the catalyst surface, which results in a decrease in durability under catalytic activity tests. Therefore, it is judged that a combined process of catalytic oxidation and regeneration is needed.

Inhibition of Fat-Storing Cell Proliferation by a Monomeric Arginase Derived from Perfused Rat Liver

  • Kim, Ki-Yong;Choi, In-Pyo;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.213-220
    • /
    • 2000
  • A fulminant hepatitis is associated with massive liver cell necrosis and a high mortality rate. But survivors regenerate a normal liver and do not have chronic liver disease. This clinical course suggests that the acutely injured livers release a factor that allows a recovery from chronic hepatitis or cirrhosis. The objective of this study was to isolate and characterize an anti-fibrotic factor from acutely damaged rat livers. The liver cell necrosis was prepared from rat by warm ischemical perfusion and the perfusates were assessed against the growth inhibition of fat-storing cells (FSC). A liver-derived growth inhibitory factor (LDGIF) was purified from ischemically damaged rat livers by chromatographies on Sephacryl S-300, CM Sepharose, hydroxyapatite, and Superose 12. The LDGIF was isolated with an overall purification of 194-fold and 40% recovery. Although LDGIF was identified as the rat liver arginase by Nterminal sequence analysis, LDGIF exists as a monomer and the purified native arginase has a trimer form. Furthermore, LDGIF has a lower enzyme activity on the hydrolysis of L-arginine and a higher inhibitory effect on proliferation of FSC than the normal rat liver arginase. The catalytic activity of LDGIF is ascribed to the monomeric characteristics of the LDGIF. Therefore, the inhibitory action of LDGIF might not be due to the arginine depletion by the catalytic activity of arginase. In conclusion, the presence of the LDGIF could interpret the clinical course that serious fibrosis is not found in the liver of patients recovering from severe hepatic necrosis due to fulminant hepatitis, suggesting that this LDGIF may provide a novel target for the prevention and treatment of hepatic fibrosis.

  • PDF