Acknowledgement
본 연구는 2022학년도 경기대학교 대학원 연구원장학생 장학금 지원에 의하여 수행되었음.
References
- B.-C. Ko, J.-K. Lee, Y.-S. Lee, M.-G. Lee, and S.-K. Kam, A Study on Odor Emission Characteristics of Domestic Sewage Treatment Facilities Using Composite Odor Concentration and Hydrogen Sulfide Concentration, J. Environ. Sci., 21, 1379-1388 (2012).
- H. W. Ryu, K. S. Jo, T. H. Lee, and M. Huh, Management of offensive odors in swine production facilities: I. domestic status and offensive odors in swine production, J. Korean Soc. Odor Res. Eng., 2, 69-77 (2003).
- K. Y. Kim, J. B. Park, C.-N. Kim, and K. J. Lee, Field study of emission characteristics of ammonia and hydrogen sulfide by pig building type, J. Korean Soc. Occup. Environ. Hyg., 16, 36-43 (2016).
- B. C. Ko, J. K. Lee, Y. S. Lee, M. G. Lee, and S. K. Kam, A study on odor emission characteristics of domestic sewage treatment facilities using composite odor concentration and hydrogen sulfide concentration, J. Environ. Sci., 21, 1379-1388 (2012).
- S. Y. Choi, Y. H. Jang, and S. S. Kim, A study on the optimization of sewage sludge-based adsorbent carbonization condition for improving adsorption capacity of hydrogen sulfide (H2S), Appl. Chem. Eng., 29, 765-771 (2018). https://doi.org/10.14478/ACE.2018.1094
- S. Y. Choi, D. H. Han, and S. S. Kim, A study on the optimization of active material and preparation of granular adsorbentof metal oxide-based adsorbent for adsorption of hydrogen sulfide (H2S), Appl. Chem. Eng., 30, 460-465 (2019). https://doi.org/10.14478/ACE.2019.1041
- S. Y. Choi, D. H. Han, and S. S. Kim, A study on the optimization of activated carbon adsorbent preparation condition and evaluation of application supporting of K-Fe-Li ternary metal ions for improving adsorption capacity of hydrogen sulfide (H2S), Clean Technol., 25, 189-197 (2019).
- A. Choudhury, T. Shelford, G. Felton, C. Gooch, and S. Lansing, Evaluation of hydrogen sulfide scrubbing systems for anaerobic digesters on two U.S. dairy farms, Energies, 12, 4605 (2019). https://doi.org/10.3390/en12244605
- M. P. Chenar, H. Savoji, M. Soltanieh, T. Matsuura, and S. Tabe, Removal of hydrogen sulfide from methane using commercial polyphenylene oxide and Cardo-type polyimide hollow fiber membranes, Korean J. Chem. Eng., 28, 902-913 (2011). https://doi.org/10.1007/s11814-010-0437-7
- H. Eom, Y. Jang, S. Y. Choi, S. M. Lee, and S. S. Kim, Application and regeneration of honeycomb-type catalysts for the selective catalytic oxidation of H2S to sulfur from landfill gas, Appl. Catal. A: Gen., 590, 117365 (2020). https://doi.org/10.1016/j.apcata.2019.117365
- H. Eom, S. M. Lee, H. Kang, Y. H. Lee, S. W. Chang, and S. S. Kim, Effect of VOx surface density and structure on VOx/TiO2 catalysts for H2S selective oxidation reaction, J. Ind. Eng. Chem., 92, 252-262 (2020). https://doi.org/10.1016/j.jiec.2020.09.013
- H. Kang, Y. H. Lee, S. C. Kim, S. W. Chang, and S. S. Kim, Optimization of preparation conditions of vanadium-based catalyst for room temperature oxidation of hydrogen sulfide, Appl. Chem. Eng., 32, 326-331 (2021). https://doi.org/10.14478/ACE.2021.1028
- D. Barba, V. Palma, and P. Ciambelli, Screening of catalysts for H2S abatement from biogas to feed molten carbonate fuel cells, Int. J. Hydrog. Energy, 38, 328-335 (2013). https://doi.org/10.1016/j.ijhydene.2012.10.010
- V. Palma and D. Barba, H2S purification from biogas by direct selective oxidation to sulfur on V2O5-CeO2 structured catalysts, Fuel, 135, 99-104 (2014). https://doi.org/10.1016/j.fuel.2014.06.012
- V. Palma and D. Barba, Vanadium-ceria catalysts for H2S abatement from biogas to feed to MCFC, Int. J. Hydrog. Energy, 42, 1891-1898 (2017). https://doi.org/10.1016/j.ijhydene.2016.06.160
- V. Palma, D. Barba, and V. Gerardi, Honeycomb-structured catalysts for the selective partial oxidation of H2S, J. Clean. Prod., 111, 69-75 (2016). https://doi.org/10.1016/j.jclepro.2015.07.105
- M. Y. Shin, D. W. Park, and J. S. Chung, Vanadium-containing catalysts for the selective oxidation of H2S to elemental sulfur in the presence of excess water, Catal. Today, 63, 405-411 (2000). https://doi.org/10.1016/S0920-5861(00)00485-5
- L. Shen, X. Zheng, G. Lei, X. Li, Y. Cao, and L. Jiang, Hierarchically porous γ-Al2O3 nanosheets: Facile template-free preparation and reaction mechanism for H2S selective oxidation, Chem. Eng. J., 346, 238-248 (2018). https://doi.org/10.1016/j.cej.2018.03.157
- B. Pongthawornsakun, S. Phatyenchuen, J. Panpranot, and P. Praserthdam, The low temperature selective oxidation of H2S to elemental sulfur on TiO2 supported V2O5 catalysts, J. Environ. Chem. Eng., 6, 1414-1423 (2018). https://doi.org/10.1016/j.jece.2018.01.045
- X. Kan, X. Chen, W. Chen, J. Mi, J.-Y. Zhang, F. Liu, A. Zheng, K. Huang, L. Shen, C. Au, and L. Jiang, Nitrogen-decorated, ordered mesoporous carbon spheres as high-efficient catalysts for selective capture and oxidation of H2S, ACS Sustain. Chem. Eng., 7, 7609-7618 (2019). https://doi.org/10.1021/acssuschemeng.8b05852
- D.-W. Park, B.-K. Park, D.-K. Park, and H.-C. Woo, Vanadium-antimony mixed oxide catalysts for the selective oxidation of H2S containing excess water and ammonia, Appl. Catal. A: Gen., 223, 215-224 (2002). https://doi.org/10.1016/S0926-860X(01)00760-8
- K. Y. Cho, K. J. Kim, and D. H. Riu, Effect of heating rate and pressure on pore growth of porous carbon materials, Carbon Lett., 7, 271-276 (2006).
- D. W. Kwon, K. H. Park, and S. C. Hong, The influence on SCR activity of the atomic structure of V2O5/TiO2 catalysts prepared by a mechanochemical method, Appl. Catal. A: Gen., 451, 227-235 (2013). https://doi.org/10.1016/j.apcata.2012.09.050
- S. H. Moon, S. J. Lee, and I. S. Ryu, A study on the regeneration of scr catalyst deactivated by unburned carbon deposition, J. Korean Soc. Environ. Eng., 32, 928-935 (2010).
- N. Arora, G. Deo, I. E. Wachs, and A. M. Hirt, Surface aspects of bismuth-metal oxide catalyst, J. Catal., 159, 1-13 (1996). https://doi.org/10.1006/jcat.1996.0058
- J. H. Shin, D. W. Kwon, and S. C. Hong, A study of structural characteristic control and reaction activity of V/TiO2 for NH3-SCR according to preparation method, J. Korean Soc. Atmos. Environ., 33, 297-305 (2017). https://doi.org/10.5572/KOSAE.2017.33.4.297