• Title/Summary/Keyword: catalytic effect

Search Result 827, Processing Time 0.03 seconds

Laminin-1 Phosphorylation by Protein Kinase A: Effect on self assembly and heparin binding

  • Koliakos, George;Kouzi-Koliakos, Kokkona;Triantos, Athanasios;Trachana, Varvara;Kavoukopoulos, Evaggelos;Gaitatzi, Mary;Dimitriadou, Aphrodite
    • BMB Reports
    • /
    • v.33 no.5
    • /
    • pp.370-378
    • /
    • 2000
  • Incubation of purified laminin1-nidogen1 complexes with $[{\gamma}-^{32}P]-ATP$ in the presence of the catalytic subunit of the protein kinase A (cAMP-dependent protein kinase) resulted in the phosphorylation of the alpha chain of laminin-1 and of the nidogen-1 molecule. Aminoacid electrophoresis indicated that phosphate was incorporated on serine residues. The phosphorylation effect of laminin-1 on the process of self assembly was studied by turbidometry. In these experiments, the phosphorylated laminin-1 showed a reduced maximal aggregation capacity in comparison to the non-phosphorylated molecule. Examination of the laminin-1 network under the electron microscope showed that the phosphorylated sample formed mainly linear extended oligomers, in contrast to controls that formed large and dense multimeric aggregates. Heparin binding on phosphorylated laminin-1 in comparison to controls was also tested using solid-phase binding assays. The results indicated an enhanced heparin binding to the phosphorylated protein. The results of this study indicate that laminin1-nidogen1 is a substrate for protein kinase A in vitro. This phosphorylation had an obvious influence on the lamininl-nidogen1 network formation and the heparin binding capacity of this molecule. However, further studies are needed to investigate whether or not this phenomenon could play a role in the formation of the structure of basement membranes in vivo.

  • PDF

Effect of DDT on Testosterone Production by Modulator Aromatase (CYP 19) in R2C

  • Lee, Kyung-Jin;Lee, Jong-Bin;Jeong, Hye-Gwang
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.3
    • /
    • pp.308-312
    • /
    • 2003
  • Various pesticides known or suspected to interfere with steroid hormone function were screened toy effects in leydig cells on catalytic activity and mRNA expression of aromatase. Dichlorodiphenyltrichloroethane (DDT) is a widespread environmental pollutant. In this study, we investigated the effect of DDT on testosterone production through aromatase activity and its molecular mechanism in testicular leydig cell, R2C by using radioimmunoassay (RIA). As the results, the potent leydig: cell activator LH increased testosterone production compared to the control. DDT exposure significantly decreased testosterone production in R2C cell. In addition, DDT was found to increase aromatase gene expression and activity in R2C cell in a dose dependent manner. In order to assess whether the suppressive effects of DDT on LH-inducible testosterone (T) production might be influenced by the ER, ICI 182.780 was used, and it was found that these inhibitory effects of DDT were antagonized by ICI 182.780, implying that the estrogen receptor (ER) mediates the suppressive effects of DDT. Furthermore, the inducible effects of DDT on aromatase gene expression might be influenced by the ER, ICI 182.780 was used, and it was found that these enhancing effects of DDT were antagonized by ICI 182.780, implying that the ER mediates the inducible effects of DDT. Our results indicated that DDT inhibition of luteinizing hormone (LH) -inducible T production in R2C cell is mediated through aromatase. However, the precise mechanisms by which DDT enhance in R2C cell remains unknown. The current study suggests the possibility that DDT might act as a modulator aromatase gene transcription.

Identification of the sprU Gene Encoding an Additional sprT Homologous Trypsin-Type Protease in Streptomyces griseus

  • YANG HYE-YOUNG;CHOI SI-SUN;CHI WON-JAE;KIM JONG-HEE;KANG DAE-KYUNG;CHUN JAESUN;KANG SANG-SOON;HONG SOON-KWANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1125-1129
    • /
    • 2005
  • Cloning of a 6.6-kb BamHI digested chromosomal DNA from S. griseus IFO13350 revealed the presence of an additional gene encoding a novel trypsin-like enzyme, named SprU. The SprU protein shows a high homology ($79\%$ identity, $88\%$ similarity) with the SGT protease, which has been reported as a bacterial trypsin in the same strain. The amino acid sequence deduced from the nucleotide sequence of the sprU gene suggests that SprU is produced as a precursor consisting of an amino-terminal presequence (29 amino acid residues), prosequence (4 residues), and mature trypsin consisting of 222 amino acids with a molecular weight of 22.94 kDa and a calculated pI of 4.13. The serine, histidine, and aspartic acid residues composing the catalytic triad of typical serine proteases are also well conserved. When the trypsin activity of the SprU was spectrophotometrically measured by the enzymatic hydrolysis of the artificial chromogenic substrate, N-${alpha}$-benzoyl-DL-arginine-p-nitroanilide, the S. lividans transformant with pWHM3-U gave 3 times higher activity than that of control. When the same recombinant plasmid was introduced into S. griseus, however, the gene dosage effect was not so significant, as in the cases of other genes encoding serine proteases, such as sprA, sprB, and sprD. Although two trypsins, SprU and SGT, have a high degree of homology, the pI values, the gene dosage effect in S. griseus, and the gene arrangement adjacent to the two genes are very different, suggesting that the biochemical and biological function of the SprU might be quite different from that of the SGT.

Effect of Rare Earth Metal on Catalyst for Hydrogenation Reaction (희토류가 수소화 촉매에 미치는 영향)

  • An, Jae Young;Jeon, Jong-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.151-156
    • /
    • 2018
  • As industry and medicine developed, many people became interested in the quality of life. As the concern for health became higher, vegetarian or vegetable oils became more popular than meat. With the development of processes primarily using nickel catalysts today, the shelf life of vegetable oils has increased and mobility has become more convenient. Currently nickel catalysts for the curing of oil are dominated by foreign companies in the world market. On the other hand, the mass production technology of domestic nickel catalyst is backward, and the entire amount is imported from foreign countries. Therefore, there is a need for active research and development of a catalyst that can be commercialized in korea. In this study, nickel as a main active catalyst was used as a base for hydrogen curing reaction, and the effect of rare earth on catalytic activity was investigated. A certain amount of rare earths could induce the dispersion of nickel to increase efficiency and use as co-catalyst.

Biological effects of zinc oxide nanoparticles on inflammation

  • Kim, Min-Ho
    • CELLMED
    • /
    • v.6 no.4
    • /
    • pp.23.1-23.6
    • /
    • 2016
  • With the rapid developments in nanotechnology, an increasing number of nanomaterials have been applied in various aspects of our lives. Recently, pharmaceutical nanotechnology with numerous advantages has growingly attracted the attention of many researchers. Zinc oxide nanoparticles (ZnO-NPs) are nanomaterials that are widely used in many fields including diagnostics, therapeutics, drug-delivery systems, electronics, cosmetics, sunscreens, coatings, ceramic products, paints, and food additives, due to their magnetic, catalytic, semiconducting, anti-cancer, anti-bacterial, anti-inflammatory, ultraviolet-protective, and binding properties. The present review focused on the recent research works concerning role of ZnO-NP on inflammation. Several studies have reported that ZnO-NP induces inflammatory reaction through the generation of reactive oxygen species by oxidative stress and production of inflammatory cytokines by activation of nuclear factor-${\kappa}B$ ($NF-{\kappa}B$). Meanwhile, other researchers reported that ZnO-NP exhibits an anti-inflammatory effect by inhibiting the up-regulation of inflammatory cytokines and the activation of $NF-{\kappa}B$, caspase-1, $I{\kappa}B$ $kinase{\beta}$, receptor interacting protein2, and extracellular signal-regulated kinase. Previous studies reported that size and shape of nanoparticles, surfactants used for nanoparticles protection, medium, and experimental conditions can also affect cellular signal pathway. This review indicated that the anti-inflammatory effectiveness of ZnO-NP was determined by the nanoparticle size as well as various experimental conditions. Therefore, the author suggests that pharmaceutical therapy with the ZnO-NP is one of the possible strategies to overcome the inflammatory reactions. However, further studies should be performed to maximize the anti-inflammatory effect of ZnO-NP to apply as a potential agent in biomedical applications.

A Study on the Sulfur-Resistant Catalysts for Water Gas Shift Reaction II. Effect of Alkali Metal Salt on the Activity of CoMo Catalyst (황에 저항성을 가지는 수성가스 전환반응 촉매의 연구 II. CoMo 촉매의 활성에 미치는 알칼리 금속염의 영향)

  • Kim, Joon Hee;Lee, Ho In
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.6
    • /
    • pp.696-702
    • /
    • 1998
  • The effect of alkali metal salt on the activity of Co-Mo catalyst which has high resistance to sulfur poisoning for water gas shift reaction(WGSR) was studied. Two groups of catalysts were prepared to investigate the effects of anion and cation in alkali metal salts. For K-doped catalysts made with various potassium salts having different anion, the catalytic activity was explained to depend mainly on the BET surface area. Among the catalysts prepared by various nitrates of alkali metal as precursor, the Li-doped catalyst showed the best activity, and the others did not make significant differences giving relatively low activities. And the change of BET surface area by varying the loading of alkali metal showed a similar trend to that of activity. In this case, the activity was dependent on both BET surface area and the ratio of $Mo^{6+}$ with a tetrahedral coordination symmetry to $Mo^{6+}$ with an octahedral one, $Mo^6+[T]/Mo^{6+}[O]$ value.

  • PDF

K+ Ion Catalysis in Nucleophilic Displacement Reaction of Y-Substituted-Phenyl Picolinates with Potassium Ethoxide: Effect of Substituent Y on Reactivity and Transition State Structure

  • Im, Hyun-Ju;Lee, Jieun;Kim, Mi-Yeon;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1749-1753
    • /
    • 2014
  • Pseudo-first-order rate constants ($k_{obsd}$) have been measured spectrophotometrically for the nucleophilic substitution reaction of Y-substituted-phenyl picolinates (7a-f) with potassium ethoxide (EtOK) in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$. The plot of $k_{obsd}$ vs. [EtOK] curves upward while the plot of $k_{obsd}/[EtO^-]_{eq}$ vs. $[EtO^-]_{eq}$ is linear with a positive intercept in all cases. Dissection of $k_{obsd}$ into $k_{EtO^-}$ and $k_{EtOK}$ (i.e., the second-order rate constants for the reactions with the dissociated $EtO^-$ ion and ion-paired EtOK, respectively) has revealed that the ion-paired EtOK is more reactive than the dissociated $EtO^-$. The ${\sigma}^{\circ}$ constants result in a much better Hammett correlation than ${\sigma}^-$ constants, indicating that the reaction proceeds through a stepwise mechanism in which departure of the leaving group occurs after the rate-determining step (RDS). $K^+$ ion catalyzes the reaction by increasing the electrophilicity of the reaction center through formation of a cyclic transition state (TS). The catalytic effect decreases as the substituent Y becomes a stronger electron-withdrawing group (EWG). Development of a positive charge on the N atom of the picolinyl moiety through resonance interactions is responsible for the decreasing $K^+$ ion catalysis.

Production of Hydrogen and Carbon Nanotubes from Catalytic Decomposition of Methane over Ni:Cu/Alumina Modified Supported Catalysts

  • Hussain, Tajammul;Mazhar, Mohammed;Iqbal, Sarwat;Gul, Sheraz;Hussain, Muzammil;Larachi, Faical
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1119-1126
    • /
    • 2007
  • Hydrogen gas and carbon nanotubes along with nanocarbon were produced from commercial natural gas using fixed bed catalyst reactor system. The maximum amount of carbon (491 g/g of catalyst) formation was achieved on 25% Ni, 3% Cu supported catalyst without formation of CO/CO2. Pure carbon nanotubes with length of 308 nm having balloon and horn type shapes were also formed at 673 K. Three sets of catalysts were prepared by varying the concentration of Ni in the first set, Cu concentration in the second set and doping with K in the third set to investigate the effect on stabilization of the catalyst and production of carbon nanotubes and hydrogen by copper and potassium doping. Particle size analysis revealed that most of the catalyst particles are in the range of 20-35 nm. All the catalysts were characterized using powder XRD, SEM/EDX, TPR, CHN, BET and CO-chemisorption. These studies indicate that surface geometry is modified electronically with the formation of different Ni, Cu and K phases, consequently, increasing the surface reactivity of the catalyst and in turn the Carbon nanotubes/H2 production. The addition of Cu and K enhances the catalyst dispersion with the increase in Ni loadings and maximum dispersion is achieved on 25% Ni: 3% Cu/Al catalyst. Clearly, the effect of particle size coupled with specific surface geometry on the production of hydrogen gas and carbon nanotubes prevails. Addition of K increases the catalyst stability with decrease in carbon formation, due to its interaction with Cu and Ni, masking Ni and Ni:Cu active sites.

Characterization of the effect of He+ irradiation on nanoporous-isotropic graphite for molten salt reactors

  • Zhang, Heyao;He, Zhao;Song, Jinliang;Liu, Zhanjun;Tang, Zhongfeng;Liu, Min;Wang, Yong;Liu, Xiangdong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1243-1251
    • /
    • 2020
  • Irradiation-induced damage of binderless nanoporous-isotropic graphite (NPIG) prepared by isostatic pressing of mesophase carbon microspheres for molten salt reactor was investigated by 3.0 MeV He+ irradiation at room temperature and high temperature of 600 ℃, and IG-110 was used as the comparation. SEM, TEM, X-ray diffraction and Raman spectrum are used to characterize the irradiation effect and the influence of temperature on graphite radiation damage. After irradiation at room temperature, the surface morphology is rougher, the increase of defect clusters makes atom flour bend, the layer spacing increases, and the catalytic graphitization phenomenon of NPIG is observed. However, the density of defects in high temperature environment decreases and other changes are not obvious. Mechanical properties also change due to changes in defects. In addition, SEM and Raman spectra of the cross section show that cracks appear in the depth range of the maximum irradiation dose, and the defect density increases with the increase of irradiation dose.

The Effect of Organic Solvents on the Activity for the Synthesis of 12wt% Co-based FT Catalyst (12wt% Co 담지 FT 촉매 제조시 유기용매가 촉매활성에 미치는 영향연구)

  • LEE, JIYUN;HAN, JA-RYOUNG;CHUNG, JONGTAE;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.4
    • /
    • pp.339-346
    • /
    • 2015
  • The synthesis of Fischer-Tropsch (FT) oil is the catalytic hydrogenation of CO to give a range of products, which can be used for the production of high-quality diesel fuel, gasoline and linear chemicals. This studied catalyst was prepared Cobalt-supported alumina and silica by the incipient wet impregnation of the nitrates of cobalt, promoter and organic solvent with supports. Cobalt catalysts were calcined at $350^{\circ}C$ before being loaded into the FT reactors. After the reduction of catalyst has been carried out under $450^{\circ}C$ for 24h, FT reaction of the catalyst has been carried out at GHSV of 4,000/hr under $200^{\circ}C$ and 20atm. From these experimental results, we have obtained the results as following; In case of $SiO_2$ catalysts, the activity of 12wt% $Cobalt-SiO_2$ synthesized by organic solvent was about 2 or 3 times higher than the activity of 12wt% $Cobalt-SiO_2$ catalyst synthesized without organic solvent. In particular, the activity of the $Cobalt-SiO_2$ catalyst prepared in the presence of an organic solvent P was two to three times higher than that of the $Cobalt-SiO_2$ catalyst prepared without the organic solvent. Effect of Cr and Cu metal as a promoter was found little. 200 h long-term activity test was performed with a $Co/SiO_2$ catalyst prepared in the presence of an organic solvent of Glyoxal solution.