• Title/Summary/Keyword: catalytic application

Search Result 244, Processing Time 0.021 seconds

Carbon Nanotube Synthesis and Growth Using Zeolite by Catalytic CVD and Applications

  • Zhao, Wei;Nam, Seo Dong;Pokhrel, Ashish;Gong, Jianghong;Kim, Ik Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.1-17
    • /
    • 2013
  • Since their first discovery, carbon nanotubes (CNTs) have become a material central to the field of nanotechnology. Owing to their splendid physical, structural and chemical properties, they have the potential to impact a wide range of applications, including advanced ceramics, nanoelectronic devices, nanoscale sensors, solar cells, battery electrodes, and field emitters. This review summarizes the synthetic methods of preparing CNTs and focuses on the chemical vapor deposition (CVD) method, especially catalytic CVD. In order to stabilize and disperse the catalyst nanoparticles (NPs) during synthesis, zeolite was implemented as the template to support metal-containing NPs, so that both CNTs in the bulk and on a 2D substrate were successfully synthesized. Despite more challenges ahead, there is always hope for widespread ever-new applications for CNTs with the development of technology.

Synthesis of Palladium Nanoparticles Encapsulated in Phosphine Ligand-Grafted Mesoporous Silicas and Their Application to Suzuki Cross-Coupling Reaction (팔라듐 나노입자가 담지된 메조포러스 실리카의 제조와 이를 이용한 Suzuki Cross-Coupling 반응의 적용연구)

  • Kim, Sang-Wook;Joo, Jin
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.13-18
    • /
    • 2011
  • Phosphine ligand-grafted mesoporous silica materials with large pores were prepared for the ligand-modified heterogeneous Pd nanocatalysts. New heterogeneous catalytic system was developed using palladium nanoparticles encapsulated in phosphine ligand-grafted mesoporous silica. The catalyst showed good catalytic activities for Suzuki cross-coupling using bromobenzene derivatives due to excellent phosphine ligand effects. Catalytic results showed nanoparticie catalysts can be recycled twice with decreased yields.

A Study on the Basic design changes according to the application of LNG Ready - S Notation (ABS LNG Ready - S Notation 적용에 따른 기본설계 변경사항 검토)

  • Song, Da-Hye
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.54-58
    • /
    • 2017
  • The vessels which are operated in ECA (Emission Control Area) after $1^{st}$ January 2016 shall be complied with revised NOx emission requirement (Tier III). Effective solutions for NOx emission requirement are SCR (Selective Catalytic Reduction), EGR (Exhaust Gas Recirculation) and Installation of LNG Dual Fuel Engine. This study is considered the design modification as per application of LNG Ready notation. In case of LNG Ready - S notation, the vessel shall be retrofitted the Main engine with Dual fuel engine and LNG Fuel system after delivery. On this paper, the entire process for design modification was explained to meet the requirement for LNG Ready notation.

  • PDF

Polymer Support Immobilized Acidic Ionic Liquid: Preparation and Its Application as Catalyst in the Synthesis of Hantzsch 1,4-Dihydropyridines

  • Jahanbin, Bentolhoda;Davoodnia, Abolghasem;Behmadi, Hossein;Tavakoli-Hoseini, Niloofar
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2140-2144
    • /
    • 2012
  • A polymer support immobilized acidic ionic liquid was prepared by copolymerization of 3-vinyl-1-(4-sulfonic acid)butylimidazolium hydrogen sulfate with styrene in the presence of benzoyl peroxide and its primary application as a solid acidic heterogeneous catalyst to the synthesis of Hantzsch 1,4-dihydropyridines through a one-pot three-component reaction of aromatic aldehydes, ethyl acetoacetate and ammonium acetate was investigated. The results showed that this heterogeneous catalyst has high catalytic activity and the desired products were obtained in good to high yields. Moreover, the catalyst was found to be reusable and a considerable catalytic activity still could be achieved after third run.

Catalytic Decomposition of Hydrogen Peroxide for Application on Micro Propulsion (마이크로 추력기 응용을 위한 과산화수소 촉매 분해 반응)

  • An Sung-Yong;Lee Jong-Kwang;Rang Seong-Min;Kwon Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.266-271
    • /
    • 2005
  • An experimental investigation of a microthruster using hydrogen peroxide as a monopropellant is described. The study comprises of preparation method of silver as a catalyst and performance evaluation of a catalytic reaction chamber. Silver was reduced in $H_2$ environment at $500^{\circ}C$. The catalytic reaction chamber was tested to determine the optimum configuration of the catalyst bed. The catalyst bed was made of a glass wafer substrate sputtered with silver and had a length of 20 mm. The conversion rate was measured with various residence time, catalyst bed temperature, catalytic coated area.

  • PDF

Synthesis, Characterization and Catalytic Application of MoO3/CeO2-ZrO2 Solid Heterogeneous Catalyst for the Synthesis of Benzimidazole Derivatives

  • Rathod, Sandip B.;Lande, Machhindra K.;Arbad, Balasaheb R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2835-2840
    • /
    • 2010
  • A series of $MoO_3/CeO_2-ZrO_2$ catalysts with different Mo content (8 - 20 wt %) were prepared by simple co-precipitation followed by impregnation method and were characterized by X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), energy dispersive spectroscopic (EDS) techniques. The prepared materials were tested for catalytic activity by the synthesis of benzimidazole derivatives using condensation of aromatic aldehydes and o-phenylenediamine by conventional and microwave method. Obtained results reveal that the catalytic activity increases with increase in Mo wt % loading. The best catalytic activity was obtained with 20 wt % $MoO_3/CeO_2-ZrO_2$. The particle size or crystallite size was estimated using Debye-Scherrer equation. After completion of reaction, the catalyst can be recovered efficiently and reused with consistent activity.

Engineered Recombinant PON1-OPH Fusion Hybrids: Potentially Effective Catalytic Bioscavengers against Organophosphorus Nerve Agent Analogs

  • Lee, Nari;Yun, Hyeongseok;Lee, Chan;Lee, Yikjae;Kim, Euna;Kim, Sumi;Jeon, Hyoeun;Yu, Chiho;Rho, Jaerang
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.144-153
    • /
    • 2021
  • Organophosphorus nerve agents (OPNAs), including both G- and V-type nerve agents such as sarin, soman, tabun and VX, are extremely neurotoxic organophosphorus compounds. Catalytic bioscavengers capable of hydrolyzing OPNAs are under development because of the low protective effects and adverse side effects of chemical antidotes to OPNA poisoning. However, these bioscavengers have certain limitations for practical application, including low catalytic activity and narrow specificity. In this study, we generated a fusion-hybrid form of engineered recombinant human paraoxonase 1 (rePON1) and bacterial organophosphorus hydrolase (OPH), referred to as GV-hybrids, using a flexible linker to develop more promising catalytic bioscavengers against a broad range of OPNAs. These GV-hybrids were able to synergistically hydrolyze both G-type OPNA analogs (paraoxon: 1.7 ~ 193.7-fold, p-nitrophenyl diphenyl phosphate (PNPDPP): 2.3 ~ 33.0-fold and diisopropyl fluorophosphates (DFP): 1.4 ~ 22.8-fold) and V-type OPNA analogs (demeton-S-methyl (DSM): 1.9 ~ 34.6-fold and malathion: 1.1 ~ 4.2-fold above) better than their individual enzyme forms. Among the GV-hybrid clones, the GV7 clone showed remarkable improvements in the catalytic activity toward both G-type OPNA analogs (kcat/Km (106 M-1 min-1): 59.8 ± 0.06 (paraoxon), 5.2 ± 0.02 (PNPDPP) and 47.0 ± 6.0 (DFP)) and V-type OPNA analogs (kcat/Km (M-1 min-1): 504.3 ± 48.5 (DSM) and 1324.0 ± 47.5 (malathion)). In conclusion, we developed GV-hybrid forms of rePON1 and bacterial OPH mutants as effective and suitable catalytic bioscavengers to hydrolyze a broad range of OPNA analogs.

NO Reduction Performance of V2O5-WO3/TiO2 Catalyst Supported on a Ceramic Sheet Filter (세라믹 시트 필터에 부착된 V2O5-WO3/TiO2 촉매의 NO 환원 성능)

  • Choi, Joo Hong
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • Catalytic filter has many advantages for the industrial application owing to its bi-functional ability to treat nitrogen oxides and particulate simultaneously. The technical feasibility of using the catalytic filter in the flue gas treatment process will be more promoted if the high porous ceramic sheet filter is utilized. However, it is not easy to prepare the effective catalytic filter using sheet filter as it has less room for catalyst support due to its thin layer. In this study, catalytic filter using a domestic ceramic sheet filter element has been prepared and conducted the experimental evaluation for NO reduction performance. The current sheet filter element shows the low catalytic activity less than 92% conversion for NO concentration 700 ppm at the face velocity $0.02m\;s^{-1}$. This unexpected low catalytic activity seems to be caused by the present of extraordinary large pores from the lack of uniformity in the pore size distribution of the sheet filter. The large pore size of the sheet filter is reduced by composing the smaller powder as its raw material, which presents improvement in NO conversion more than 96%. More improvement is observed showing 98% NO conversion which is applicable to a commercial plant when the catalyst coating layer is expanded by adding the large $TiO_2$ particles during the catalyst preparation. Both of above two methods is regarded as that the broad gates of the larger pores in the coating layer are effectively filled with the proper catalyst. So these results encourage the utilization of sheet filter as a good catalytic filter material with its potential merit of high permeability.

Trend of Nitrogen Oxide Reduction Technologies in Cement Industry (시멘트 산업에서의 질소산화물 저감 기술 동향)

  • Seo, JunHyung;Kim, YoungJin;Cho, KyeHong;Cho, JinSang;Han, KyungHo;Yoon, DoYoung
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.114-124
    • /
    • 2020
  • In the cement industry, NOx emission is recognized as an important problem, and NOx reduction technologies can be divided into process change, staged combustion, low NOx burner, selective non-catalytic reduction and selective catalytic reduction method. The operation of the selective non-catalytic reduction method, which is the most used in the cement industry, is expected to make it difficult to meet the emission standards to be strengthened in the future, and it is necessary to improve equipment such as SCR and secure technologies. Recently, we are developing technologies for simultaneous application of SNCR and SCR, dust and denitrification filter technology, and removal technology using NO oxidation.