DOI QR코드

DOI QR Code

Synthesis, Characterization and Catalytic Application of MoO3/CeO2-ZrO2 Solid Heterogeneous Catalyst for the Synthesis of Benzimidazole Derivatives

  • Rathod, Sandip B. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Lande, Machhindra K. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Arbad, Balasaheb R. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University)
  • 투고 : 2010.06.06
  • 심사 : 2010.08.18
  • 발행 : 2010.10.20

초록

A series of $MoO_3/CeO_2-ZrO_2$ catalysts with different Mo content (8 - 20 wt %) were prepared by simple co-precipitation followed by impregnation method and were characterized by X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), energy dispersive spectroscopic (EDS) techniques. The prepared materials were tested for catalytic activity by the synthesis of benzimidazole derivatives using condensation of aromatic aldehydes and o-phenylenediamine by conventional and microwave method. Obtained results reveal that the catalytic activity increases with increase in Mo wt % loading. The best catalytic activity was obtained with 20 wt % $MoO_3/CeO_2-ZrO_2$. The particle size or crystallite size was estimated using Debye-Scherrer equation. After completion of reaction, the catalyst can be recovered efficiently and reused with consistent activity.

키워드

참고문헌

  1. Thomas, J. M. Sci. Am. 1992, 266, 112.
  2. Misono, M.; Okuhara, T. Chemtech. 1993, 11, 23.
  3. Olah, G. A.; Takashi, K.; David, M. Synthesis 1978, 929.
  4. Guttmann, A. T.; Grasselli, R. K. Appl. Catal. 1983, 9, 57.
  5. Dupont, P.; Vedrine, J. C.; Paumard, E.; Hecquet, G. Appl. Catal. A: Gen. 1995, 129, 217. https://doi.org/10.1016/0926-860X(95)00099-2
  6. Arata, K. Adv. Catal. 1990, 37,165. https://doi.org/10.1016/S0360-0564(08)60365-X
  7. Corma, A. Chem. Rev. 1995, 95, 599.
  8. Reddy, B. M.; Patil, M. K.; Rao, K. N. J. Mol. Catal. A: Chem. 2006, 258, 302. https://doi.org/10.1016/j.molcata.2006.05.065
  9. Song, X.; Sayuri, A. Catal. Rev. Sci. Eng. 1996, 38, 329. https://doi.org/10.1080/01614949608006462
  10. Yadav, G. D.; Nair, J. J. Micropor. Mesopor. Mater. 1999, 33, 1. https://doi.org/10.1016/S1387-1811(99)00147-X
  11. Reddy, B. M.; Sreekanth, P. M. Tetrahedron Lett. 2003, 44, 4447. https://doi.org/10.1016/S0040-4039(03)01034-7
  12. Rosenberg, D. J.; Coloma, F.; Anderson, J. A. J. Catal. 2002, 210, 218. https://doi.org/10.1006/jcat.2002.3656
  13. Reddy, B. M.; Sreekanth, P. M.; Yamada Y. J. Mol. Catal A: Chem. 2005, 227, 81 https://doi.org/10.1016/j.molcata.2004.10.011
  14. Manohar, B.; Reddy, V. R.; Reddy, B. M. Synth. Commun. 1998, 28, 3183. https://doi.org/10.1080/00397919808004419
  15. Reddy, B. M.; Reddy, V. R. Synth. Commun. 1999, 29, 2789. https://doi.org/10.1080/00397919908086446
  16. Reddy, B. M.; Reddy, V. R.; Manohar, B. Synth. Commun. 1999, 29, 1235. https://doi.org/10.1080/00397919908086095
  17. Reddy, B. M.; Reddy, V. R. J. Mater. Sci. Lett. 2000, 19, 763. https://doi.org/10.1023/A:1006700318349
  18. Reddy, B. M.; Lakshmanan, P.; Khan, A.; Loridant, S. J. Phys. Chem. 2005, 109, 13545. https://doi.org/10.1021/jp051438u
  19. Porcari, A. R.; Devivar, R. V.; Kucera, L. S.; Townsend, L. B. J. Med. Chem. 1998, 41, 1252. https://doi.org/10.1021/jm970559i
  20. Roth, T.; Morningstar, M. L.; Buckheit, R. W.; Michejda, C. J. J. Med. Chem. 1997, 40, 4199. https://doi.org/10.1021/jm970096g
  21. Migawa, M. T.; Girardet, J. L.; Walker, J. A.; Koszalka, G. W.; Chamberlain, S. D.; Drach, J. C.; Townsend, L. B. J. Med. Chem. 1998, 41, 1242. https://doi.org/10.1021/jm970545c
  22. Tamm, L.; Seghal, P. B. Adv. Virus Res. 1978, 22, 187. https://doi.org/10.1016/S0065-3527(08)60775-7
  23. Hisano, T.; Ichikawa, M.; Tsumoto, K.; Tasaki, M. Chem. Pharm. Bull. 1982, 30, 2996. https://doi.org/10.1248/cpb.30.2996
  24. Chakrabarty, M.; Karmakar, S.; Mukherji, A.; Arima, S. Heterocycles 2006, 68, 967. https://doi.org/10.3987/COM-06-10692
  25. Gogoi, P.; Konwar, D. Tetrahedron Lett. 2006, 47, 79. https://doi.org/10.1016/j.tetlet.2005.10.134
  26. Lee, K. J.; Janda, K. D. Can. J. Chem. 2001, 79, 1556. https://doi.org/10.1139/cjc-79-11-1556
  27. Lin, S.; Yang, L. Tetrahedron Lett. 2005, 46, 4315. https://doi.org/10.1016/j.tetlet.2005.04.101
  28. Beaulieu, P. L.; Hache, B.; Von Moos, E. Synthesis 2003, 1683.
  29. Singh, M. P.; Sasmal, S.; Lu, W. Synthesis 2000, 1380.
  30. Trivedi, R.; De, S. K.; Gibbs, R. A. J. Mol. Cat. A: Chem. 2005, 245, 8.
  31. Massimo, C.; Francesco, E.; Francesca, M. Synlett 2004, 1832.
  32. Itoh, T.; Nagata, K.; Ishikawa, H.; Ohsawa, A. Heterocycles 2004, 63, 2769. https://doi.org/10.3987/COM-04-10215
  33. Nagata, K.; Itoh, T.; Ishikawa, H.; Ohsawa, A. Heterocycles 2003, 61, 93. https://doi.org/10.3987/COM-03-S47
  34. Ma, H. Q.; Wang, Y. L.; Wang, J. Y. Heterocycles 2006, 68, 1669. https://doi.org/10.3987/COM-06-10785
  35. Nagawade, R. R.; Shinde, D. B. Russ. J. Org. Chem. 2006, 42, 453. https://doi.org/10.1134/S1070428006030201
  36. Han, X.; Ma, H.; Wang,Y. Arkivoc 2007, 150.
  37. Lopez, S. E.; Restrepo, J.; Salazar, J. Bull. Korean Chem. Soc. 2009, 30, 1628. https://doi.org/10.5012/bkcs.2009.30.7.1628
  38. Khan, A. T.; Pravin, T.; Choudhury, L. H. Synth. Commun. 2009, 39, 2339. https://doi.org/10.1080/00397910802654815
  39. Rathod, S. B.; Gambhire, A. B.; Arbad, B. R.; Lande, M. K. Bull. Korean Chem. Soc. 2010, 31, 339. https://doi.org/10.5012/bkcs.2010.31.02.339
  40. Katkar, S. S.; Lande, M. K.; Arbad, B. R.; Rathod, S. B. Bull. Korean Chem. Soc. 2010, 31, 1301. https://doi.org/10.5012/bkcs.2010.31.5.1301
  41. Lagashetty, A.; Havanoor, V.; Basavaraja, S. Sci. Tecno. Adva. Mate. 2007, 8, 484. https://doi.org/10.1016/j.stam.2007.07.001
  42. Sohn, J. R.; Chun, E. W. Bull. Korean Chem. Soc. 2003, 24, 1785. https://doi.org/10.5012/bkcs.2003.24.12.1785
  43. Williams, C. C.; Ekerdt, J. G.; Jehng, J. M.; Hardcastle, F. D. J. Phys. Chem. 1991, 95, 8781. https://doi.org/10.1021/j100175a067
  44. Carbucicchio, M.; Trifiro, F. J. Catal. 1980, 62, 13. https://doi.org/10.1016/0021-9517(80)90415-7
  45. Bruckman, K.; Grzybowska, B.; Tatibouet, J. M. Appl. Catal. A 1993, 96, 279. https://doi.org/10.1016/0926-860X(90)80016-8
  46. Ono, T.; Miyata, H.; Kubokawa, Y. J. Chem. Soc. 1987, 183, 1761.
  47. Ma, X.; Gong, J.; Wang, S.; Gao, N.; Wang, D.; Yang, X. Catal. Commun. 2004, 5, 101. https://doi.org/10.1016/j.catcom.2003.12.001
  48. Varma, S. Green Chem. 1999, 1, 43. https://doi.org/10.1039/a808223e

피인용 문헌

  1. ChemInform Abstract: Synthesis, Characterization and Catalytic Application of MoO3/CeO2-ZrO2 Solid Heterogeneous Catalyst for the Synthesis of Benzimidazole Derivatives. vol.42, pp.9, 2011, https://doi.org/10.1002/chin.201109128
  2. Preparation, characterization, and application of 1,1′-disulfo-[2,2′-bipyridine]-1,1′-diium chloride ionic liquid as an efficient catalyst for the synthesis of benzimidazole derivatives vol.41, pp.10, 2015, https://doi.org/10.1007/s11164-014-1852-x
  3. Synthesis of benzimidazole and quinoxaline derivatives using reusable sulfonated rice husk ash (RHA-SO3H) as a green and efficient solid acid catalyst vol.42, pp.2, 2016, https://doi.org/10.1007/s11164-015-2075-5
  4. Enhanced Catalytic Properties of Molybdenum Promoted Mesoporous Cobalt Oxide: Structure-Surface-Dependent Activity for Selective Synthesis of 2-Substituted Benzimidazoles pp.18673880, 2019, https://doi.org/10.1002/cctc.201801085
  5. Characterization of hierarchical α-MoO3 plates toward resistive heating synthesis: electrochemical activity of α-MoO3/Pt modified electrode toward methanol oxidation at vol.28, pp.21, 2017, https://doi.org/10.1088/1361-6528/aa67c9
  6. Heterogeneous Catalytic Synthesis of 2-Methylbenzimidazole from 2-Nitroaniline and Ethanol Over Mg Modified Cu-Pd/γ-Al2O3 vol.9, pp.1, 2010, https://doi.org/10.3390/catal9010008
  7. Enhanced adsorption and desorption of Cr(VI) from aqueous solution using hydrous Ce1-xZrxO2: Isotherm, kinetics and thermodynamic evaluation vol.42, pp.14, 2010, https://doi.org/10.1080/01932691.2020.1845716