DOI QR코드

DOI QR Code

Trend of Nitrogen Oxide Reduction Technologies in Cement Industry

시멘트 산업에서의 질소산화물 저감 기술 동향

  • Received : 2020.09.29
  • Accepted : 2020.11.23
  • Published : 2020.12.30

Abstract

In the cement industry, NOx emission is recognized as an important problem, and NOx reduction technologies can be divided into process change, staged combustion, low NOx burner, selective non-catalytic reduction and selective catalytic reduction method. The operation of the selective non-catalytic reduction method, which is the most used in the cement industry, is expected to make it difficult to meet the emission standards to be strengthened in the future, and it is necessary to improve equipment such as SCR and secure technologies. Recently, we are developing technologies for simultaneous application of SNCR and SCR, dust and denitrification filter technology, and removal technology using NO oxidation.

시멘트 산업에서 질소산화물 배출은 중요한 문제로 인식되고 있으며 이를 저감하는 기술은 공정변경, 단계적 연소, 저 NOx 버너, SNCR, SCR로 나눌 수 있다. 이중 시멘트 산업에서 가장 많이 사용되고 있는 SNCR 운영만으로는 향후 강화될 배출허용기준을 만족시키기 어려울 것이 예상되며 SCR 등의 추가적인 장비 개선 및 기술 확보가 필요한 상황이다. 이에 따라 최근에는 국외를 중심으로 SNCR 및 SCR 동시 적용 기술, 분진 및 탈질 필터 기술과 NO 산화를 이용한 제거기술 등을 개발하고 있다.

Keywords

References

  1. Jeong, B. Y., and Chu, Y. S., 2019 : Cement industry status and recent issue trends, PD Issue Report, Korea Evaluation Institute of Industrial Technology, 19(12), pp.93-108.
  2. Park D. K., Yoo, M. Y., SO, S. H., et al., 2019 : Study of SNCR and combustion control on reduction of NOx emission at manufacturing process cement, The Korean Society of Mechanical Engineers, pp.191-192.
  3. Park, C. H., Baek, J. J., Yun, S. P., et al., 2018 : Optimization of Air Pollutant Emissions in the Cement Firing Process Using a Response Surface Method, Journal of Applied Reliability, 18(4), pp.356-369. https://doi.org/10.33162/jar.2018.12.18.4.356
  4. Jeong, B. Y., and Chu, Y. S., 2019 : Cement industry status and recent issue trends, PD Issue Report, Korea Evaluation Institute of Industrial Technology, 19(12), pp.93-108.
  5. Lee, C. K., 2016 : Cement industry and recent research status, Ceramist, 19(2), pp.59-64.
  6. Lee, J. Y., Ahn, K. W., and Kim, W. S., 2003 : NOx reduction technology in cement industry, Cement, pp.44-54.
  7. Lim, K. K., Hong, S. S., Kang, B. K., et al., 1998 : Process analysis for DeNOx in cement calcination process. Proceeding of the Meeting of KOSAE, pp.146-147.
  8. Daood, S. S., Javed, M. T., Gibbs, B. M., et al., 2013 : NOx control in coal combustion by combining biomass cofiring, oxygen enrichment and SNCR, Fuel, 105, pp.283-292. https://doi.org/10.1016/j.fuel.2012.06.087
  9. Shin, M. S., Kim H, S., and Jang, D. S., 2007 : Numerical study on the SNCR application of space-limited industrial boiler, Applied Thermal Engineering, 27, pp.2850-2857. https://doi.org/10.1016/j.applthermaleng.2006.08.019
  10. Kong, S, Y. and Koo, H, J., 2002 : Evaluation and cost analysis of nitrogen oxide reduction technology, Korea Environment Institute Research Report, pp.1-144.
  11. U. S. EPA., 1994 : Alternative Control Technology Document - NOx Emission from Cement Manufacturing - Emission Standards Division, EPA-453/R-94-004 Report. pp.1-145.
  12. Lecker, B., Karlsson, M., Kim, D. J., et al., 1991 : Influence of Additives on Selective Non-catalytic Reduction of NO with NH3 in Circulating Fluidized Bed Boilers, Industrial and Engineering Chemistry Research, 30(11), pp.2396-2404. https://doi.org/10.1021/ie00059a006
  13. Lim, Y. I., Yoo, K. S., Jeong, S. M., et al., 1997 : A study on NOx Removal form Flue Gas by Using Urea Solution, Korean Chemical Engineering Research, 35(1), pp.83-89.
  14. Park, S. Y., Yoo, K. S., Lee, J. K., et al., 2006 : Effects of Organic and Inorganic Additives on Selective Non Catalytic Reduction Reaction of NOx in a Pilot Scale Flow Reactor, Korean Chemical Engineering Research, 44(5), pp.540-546.
  15. Sotirchos, V. S., and Yu, H. C., 1985 : Mathematical modeling of gas-solid reactions with solid product, Chemical Engineering Science, 40, pp.2039-2052. https://doi.org/10.1016/0009-2509(85)87021-4
  16. Richard, K. Lyon., 1975 : Method the reduction of the concentration of NO in combustion effluents using ammonia, United States Patent - USP 3900554A.
  17. Arand, J. K., Muzio, L. J., and Sotter, J. G., 1976 : Urea reduction of NOx in combustion effluents, United States Patent - USP 4208386A.
  18. Malek, M. A., and Lu, B. C., 1965 : Pressure drop and spoutable bed height in spouted beds, Iand EC Process Design and Development, 4, pp.123-128. https://doi.org/10.1021/i260013a027
  19. Mamuro, T., and Hattori, H., 1968 : Flow pattern of fluid in spouted beds, Journal of Chemical Engineering of Japan, 1, pp.1-5 https://doi.org/10.1252/jcej.1.1
  20. Fane, A. G., and Mitchell, A. G., 1984 : Minimum spouting velocity of scaled-up beds, The Canadian Journal of Chemical Engineering, 62, pp.437-439. https://doi.org/10.1002/cjce.5450620325
  21. Wendt, J. O., Linak, W. P., Groff, P. W., et al., 2001 : Hybrid SNCR-SCR technologies for NOx control : modeling and experiment, AIChE Journal, 47(11), pp.2603-2617 https://doi.org/10.1002/aic.690471123
  22. L. Litti., 1996 : Reactivity of V2O5-WO3/TiO2 DeNOx Catalyst by Transient methods, Applied Catalysis B: Environmental, 10, pp.281. https://doi.org/10.1016/S0926-3373(97)80001-X
  23. Cristiani, C., Bellotto, M., Forzatti, P., et al., 1993 : On the morphological properties of tungsta-titania de-NOxing catalysts, Journal of Materials Research, 8, pp.2019-2025. https://doi.org/10.1557/JMR.1993.2019
  24. Choung, S. J., Shin, B. S., and Lim, S. Y., 1994 : WO3 and MoO3 addition effect on V2O5/TiO2 as promoters for removal of NOx and SOx from stationary sources, Korean Journal of Chemical Engineering, 11(4), pp.254. https://doi.org/10.1007/BF02697392
  25. Eun, Y. C., Nam, I. S., Young, G. K., et al., 1991 : An Xray absorption study of copper ion exchanged H-mordenite for selective catalytic reduction of NO by ammonia, Journal of Molecular Catalysis, 69(2), pp.247-258. https://doi.org/10.1016/0304-5102(91)80149-W
  26. Yoo, K. S., 2005 : Investigation of the Enhancement Mechanism of NOx Reduction Efficiency by Adding Surfactants and Application to a Small Scale Incinerator for the Development of the Effective Surfactants in a SNCR Process, Ministry of Commerce Industry and Energy, Final Report.
  27. R. K. Lyon., 1979 : Thermal DeNOx : how it works, Environmental Management, pp.7-12.
  28. Richie D. Pickens., 1996 : Add-on control techniques for nitrogen oxide emission during municipal waste combustion, Journal of Hazardous Material, 47, pp.195-204. https://doi.org/10.1016/0304-3894(95)00122-0
  29. J. A. Caton., D. L. Siebers., 1997 : Comparison of Nitric Oxide Removal by Cyanuric Acid and by Ammonia, Combust, Sci, and Tech, 65, pp.233-266.
  30. Shigeru, A., Hidetoshi, A., Yukio, H., 1985 : The Behavior of Nitrogen Oxides in the N2H4-NO-O2 Reaction, AIChE Journal, 31(7), pp.1223-1225. https://doi.org/10.1002/aic.690310722
  31. EPA., 2007 : Alternative Control Techniques document Update-NOx Emission from New Cement Kilns, EPA453/R-07-006. pp.1-116.
  32. Steuch, H. E., Hille, J. T., Sun, W. H., et al., 1995 : Reduction of NOx Emission from a Dry Process Preheater Kiln with Calciner Through the Use of the Urea Based SNCR Process, IEEE-IAS, pp.465-483.
  33. Lv, D., Zhu, T., Liu, R., et al., 2016 : Effects of coprocessing sewage sludge in cement kiln on NOx, NH3 and PAHs emissions, Chemosphere, 159, pp.595-601. https://doi.org/10.1016/j.chemosphere.2016.06.062
  34. Schafer, S., 2004 : Staged Combustion and SNCR Technology - an Emerging Technique Research Institute of the Cement Industry (Duesseldorf), Seminar S04-05, Bernburg, European Cement Research Academy.
  35. Cha, J. S., Park, S. H., Jeon, J. K., et al., 2011 : NH3 - based SNCR of NOx : experiments and simulation, Journal of Industrial and Engineering Chemistry, 22(4), pp.443-448.
  36. Ham, S. W., 2007 : Application of SNCR Process for NOx Removal from Limestone Calcining Process, Research Review Kyungil University, 16(6). pp.995-1002.
  37. Yonsei University., 2019 : Applicability investigation of cement plant nitrogen oxide reduction technology, Korea Cement Association Service Report, pp.1-115.
  38. Lee. J. W., Yoo, L, S., Kim, H. H., et al., 2018 : The Impact and Implications of Air Pollution Problems in Korea - Fine Dust, Industrial Research Institute Report, pp.892.
  39. Kim, S. W., 2015 : NOx removal low temperature catalyst using by metal oxide MnxCuyOz and V2O5/TiO2, Technologies for Improving the Atmospheric Environment Quality, Final Report, pp.1-137.
  40. Kim, S, S., and Hong, S, C., 2007 : The Emission of NO2 and NH3 in Selective Catalytic Reduction over Manganese Oxide with NH3 at Low Temperature, Journal of Industrial and Engineering Chemistry, 18(3), pp.255-261.
  41. NICE Information Service., 2018 : Technical analysis report (Nano), Korea Investor Relations Service, 69, pp. 1-26.
  42. Bang, J. H., Steel and Metal News, https://www.snmnews.com/news/articleView.html?idxno=427840, July 9, 2018.
  43. Kim, D. J., 2015 : Research and Development of High Efficiency Treatment System to remove fine dust (PM 2.5, PM 10), NOx and Hg in a Calcination Process of Cement, Technologies for Improving the Atmospheric Environment Quality, Final Report. pp.1-163.
  44. Gore and Associate., 2001 : Gore DeNOx Catalytic Filter Bags : Case Study-Municipal Solid Waste Incinerator, Padova, Italy. pp.1-2.
  45. Airborne Catalyst., https://www.airbornecleanenergy.com/advanced-burning-catalyst.
  46. Zhang, Y., Wang, W., Shao, S., et al., 2017 : ANN-GA approach for predictive modelling and optimization of NOx emissions in a cement precalcining kiln, International Journal of Environmental Studies, 74(2), pp.253-261. https://doi.org/10.1080/00207233.2017.1280322
  47. Song, S. I., Jung, H. J., and Shin. S. M., 2006 : Optimization Methodology Integrated Data Mining and Statistical Method, Journal of the Korean Society for Quality Management, 34(4), pp.33-41.
  48. Ohno, M., Kurokawa, D., and Hirao, H., 2012 : Establishment of a cement quality predictive system-Analyses of the relationships between characteristics ana properities of cement, Cement Science and Concrete Technology, 66(1), pp.87-94. https://doi.org/10.14250/cement.66.87