DOI QR코드

DOI QR Code

Enrichment of Rare Earth Elements Contained in Coal Ashes from Korea Circulating Fluidized Bed Combustion (CFBC)

국내 순환유동층보일러(Circulating fluidized bed combustion) 석탄재의 희토류 농축

  • Kim, Young-Jin (Department of Research and Development, Korea Institute of Limestone and Advanced Materials) ;
  • Choi, Moon-Kwan (Department of Research and Development, Korea Institute of Limestone and Advanced Materials) ;
  • Seo, Jun-Hyung (Department of Research and Development, Korea Institute of Limestone and Advanced Materials) ;
  • Kim, Byung-Ryeol (Department of Research and Development, Korea Institute of Limestone and Advanced Materials) ;
  • Cho, Kye-Hong (Department of Research and Development, Korea Institute of Limestone and Advanced Materials)
  • 김영진 (한국석회석신소재연구소 연구개발부) ;
  • 최문관 (한국석회석신소재연구소 연구개발부) ;
  • 서준형 (한국석회석신소재연구소 연구개발부) ;
  • 김병렬 (한국석회석신소재연구소 연구개발부) ;
  • 조계홍 (한국석회석신소재연구소 연구개발부)
  • Received : 2020.11.09
  • Accepted : 2020.12.07
  • Published : 2020.12.30

Abstract

Enrichment possibilities for recovering rare earth elements contained in coal bottom ash generated from domestic circulating fluidized bed combustion (CFBC) were identified. The transport characteristics of the REEs according to the separation and removal of major minerals were evaluated using sieving and leaching process. The main minerals of bottom ash were identified as anhydrite, magnetite, and quartz, and this was confirmed as a 30% of REE content of the world's average coal ash REE value (404 ppm) as a result of the difference in the combustion characteristics of power plants (REE contents in starting material: 123 ppm). More than 90% of the REEs contained in the bottom ash were found to move mainly with magnetite, and less than 10% of the components were found to move with the quartz. Therefore, In order to recover rare earth elements from coal bottom ashes generated from CFBC boiler, it is necessary to select the main rare elements such as magnetite and develop a pretreatment and concentration process.

국내 순환유동층보일러형 발전소 석탄재의 주요 광물 및 희토류의 이동특성을 분석하여 석탄재 중 희토류 성분의 농축 가능성 검토를 위해 체 분리 및 침출을 통한 주요 광물의 분리 및 제거에 따른 희토류 성분의 이동특성을 평가하였다. 석탄재의 주요 광물로는 경석고, 자철석 및 석영으로 확인되었으며, 세계 석탄재 희토류 평균값(404 ppm)의 30% 수준 함량으로 확인되었다(실험대상: 123 ppm). 석탄재에 포함된 희토류 성분 중 90% 이상은 주로 자철석과 함께 이동하는 특성을 보였고, 10% 이하의 성분이 석영과 함께 이동하는 것으로 확인되었다. 이는 발전소 연소 방식 차이에 따라 발생된 석탄재 특성에 따른 영향으로 판단된다. 이에 국내 순환유동층보일러 석탄재로부터 희토류 성분 농축을 위해서는 자철석 분리가 필요하며, 이와 관련된 선별 기술 개발 및 확보가 요구된다고 판단된다.

Keywords

References

  1. Dushyantha, N., Batapola, N., Ilankoon, I. M. S. K., et al., 2020 : The story of rare earth elements(REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production, Ore Geology Reviews, 122, pp. 1-17.
  2. Lee, M. S., and Jeon, H. S., 2010 : Extractive metallurgy and separation technology of rare earth ores, J. of Korean Inst. of Resources Recycling, 19(6), pp.27-35.
  3. Zhou, B., Li, Z., Chen, C., 2017 : Global potential of rare earth resources and rare earth demand from clean technologies, minerals, 7(11), 203. https://doi.org/10.3390/min7110203
  4. Zhang, W., Yang, X., Honaker, R. Q., 2018 : Association characteristics study and preliminary recovery investigation of rare earth elements from fire clay seam coal middlings, Fuel, 215, pp.551-560. https://doi.org/10.1016/j.fuel.2017.11.075
  5. Honaker, R. Q., Zhang, W., Werner, J., 2019 : Acid leaching of rare earth elements from coal and coal ash: implications for using fluidized bed combustion to assist in the recovery of critical materials, Energy and Fuel, 33, pp.5971-5980. https://doi.org/10.1021/acs.energyfuels.9b00295
  6. Kim, Y. D., and Ko, C. S., 2010 : REE resources and it's utilization, Econ. Envron. Geol., 43(5), pp.505-516.
  7. Seredin, V. V., and Dai, S., 2012 : Coal deposits as potential alternative sources for lanthanides and yttrium, Int. J. Coal. Geol., 94, pp.67-93. https://doi.org/10.1016/j.coal.2011.11.001
  8. Kim, Y. J., 2013 : Strategy of critical materials management in the world, J. of Korean Inst. of Resources Recycling, 22(5), pp. 3-12. https://doi.org/10.7844/kirr.2013.22.5.3
  9. Franus, W., Wiatros-Motyka, M. M., and Wdowin, M., 2015 : Coal fly as a resource for rare earth elements, Environ Sci Pollut Res, 22, pp.9464-9474. https://doi.org/10.1007/s11356-015-4111-9
  10. Dai, S., Graham, I. T., and Ward, C. R., 2016 : A review of anomalous rare earth elements and yttrium in coal, Int. J. Coal. Geol., 159, pp.82-95. https://doi.org/10.1016/j.coal.2016.04.005
  11. Taggart, R. K., Hower, J. C., Dwyer, G. S., et al., 2016 : Trends in the rare earth element content of U.S.-based coal combustion fly ashes, Environ. Sci, Technol, 50, pp.5919- 5926. https://doi.org/10.1021/acs.est.6b00085
  12. Folgueras, M. B., Alonso, M., and Fernandez, F. J., 2017 : Coal and sewage sludge ashes as sources of rare earth elements, Fuel, 192, pp.128-139. https://doi.org/10.1016/j.fuel.2016.12.019
  13. Blissett, R. S., Smalley, N., and Rowson, N. A., 2014 : An investigation into six coal fly ashes from the United Kingdom and poland to evaluate rare element content, Fuel, 119, pp.236-239. https://doi.org/10.1016/j.fuel.2013.11.053
  14. Seredin, V. V., 2010 : A new method for primary evaluation of the outlook for rare earth element ores, Geol. Ore Deposits, 52(5), pp.428-433. https://doi.org/10.1134/S1075701510050077
  15. Lin, R., Howard, B. H., Roth, E. A., 2017 : Enrichment of rare earth elements from coal and coal by-products by physical separations, Fuel, 200, pp.506-520. https://doi.org/10.1016/j.fuel.2017.03.096
  16. Park, S. U., Kim, J. K., Seo, Y. S., et al., 2015 : Evaluation of some rare metals and rare earth metals contained in coal ash of coal-fired power plants in Korea, J. of Korean Inst. of Resources Recycling, 24(4), pp.67-75. https://doi.org/10.7844/kirr.2015.24.4.67
  17. Hower, J., Groppo, J., Joshi, P., et al., 2013 : Location of cerium in coal-combustion fly ashes: implications for recovery of lanthanide, Coal combustion and gasfication products, 3, pp.73-78.
  18. Dai, S., Zhao, L., Hower, J. C., et al., 2014 : Petrology, mineralogy, and chemistry of size-fractioned fly ash from the Jungar power plant, inner Mongolia, China, with emphasis in the distribution of rare earth elements, Energy and Fuel, 28, pp.1502-1514. https://doi.org/10.1021/ef402184t
  19. Pan, J., Zhou, C., Tang, M., et al., 2019 : Study on the modes occurrence of rare earth elements in coal fly ash by statics and and a sequential chemical extraction procedure, Fuel, 237, pp.555-565. https://doi.org/10.1016/j.fuel.2018.09.139
  20. Perämäki, S. E., Tiihonen, A. J., and Väisänen, A. O., 2019 : Occurence and recovery potential of rare earth elements in finish peat and biomass combustion fly ash, Journal of geochemical exploration, 201, pp.71-78. https://doi.org/10.1016/j.gexplo.2019.03.002
  21. Jang, J. K., Ji, S. W., and Ahn, J. W., 2017 : Utilization of circulating fluidized bed combustion ash and related specifications for mine backfills, J. of Korean Inst. of Resources Recycling, 26(2), pp.71-79. https://doi.org/10.7844/kirr.2017.26.2.71
  22. Zeng, T., Helble, J. J., Bool, L. E., et al., 2009 : Iron transformations during combustion of Pittsburgh no. 8 coal, Fuel, 88, pp.566-572. https://doi.org/10.1016/j.fuel.2008.11.007
  23. Moore, F., and Esmaeili, Ali., 2012 : Mineralogy and geochemistry of the coals from the karmodz and kiasar coal mines, International journal of coal geology, 96-97, pp.9-21. https://doi.org/10.1016/j.coal.2012.02.012
  24. Yang, J., Zhao, Y., Zyryanov, V., et al., 2014 : Physicalchemical characteristics and elements enrichment of magnetospheres from coal fly ashes, Fuel, 135, pp.15-26. https://doi.org/10.1016/j.fuel.2014.06.033
  25. Kolker, A., Scott, C., Hower, J. C., et al., 2017 : Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP-RG ion microprobe, International journal of coal geology, 184, pp.1-10. https://doi.org/10.1016/j.coal.2017.10.002
  26. Bock, E., 1961 : On the solubility of anhydrous calcium sulphate and of gypsum in concentrated solutions of sodium chloride at 25 ℃, 30 ℃, 40 ℃, and 50 ℃, Can. J. Chem., 39, pp.1746-1751. https://doi.org/10.1139/v61-228
  27. Salmimies, R., Mannila M., Kallas, J., et al., 2011 : Acidic dissolution of magnetite: experimental study on the effects of acidic concentration and temperature, Clay and clay minerals, 59, pp.136-146. https://doi.org/10.1346/CCMN.2011.0590203