• Title/Summary/Keyword: catalytic acid - sites

Search Result 102, Processing Time 0.022 seconds

Synthesis of Mesoporous SAPO-34 Catalyst Using Chitosan and Its DTO Reaction (키토산을 이용한 메조 세공 SAPO-34 촉매의 합성 및 DTO 반응)

  • Yoon, Young-Chan;Song, Kang;Lim, Jeong-Hyeon;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.305-311
    • /
    • 2021
  • Effects of chitosan as a mesopore directing agent of SAPO-34 catalysts were investigated to improve the catalytic lifetime in DTO reaction. The synthesized catalysts were characterized by XRD, SEM, N2 adsorption-desorption isotherm and NH3-temperature programmed desorption (TPD). The modified SAPO-34 catalysts prepared by varying the added amount of chitosan showed the same cubic morphology and chabazite structure as the conventional SAPO-34 catalyst. As the added amount of chitosan increased to 3 wt%, the surface area, mesopore volume and concentration of weak acid sites of modified SAPO-34 catalysts increased. The modified SAPO-34 catalysts showed enhanced catalytic lifetime and high selectivity for light olefins in the DTO reaction. In particular, the SAPO-CHI 3 catalyst (3 wt%) exhibited the longest catalytic lifetime than that of the conventional SAPO-34. Therefore, it was confirmed that chitosan was a suitable material as a mesopore directing agent to delay deactivation of the SAPO-34 catalyst.

Low-Temperature Combustion of Ethanol over Supported Platinum Catalysts (백금 담지 촉매상에서 에탄올의 저온연소)

  • Kim, Moon Hyeon
    • Journal of Environmental Science International
    • /
    • v.26 no.1
    • /
    • pp.67-78
    • /
    • 2017
  • Combustion of ethanol (EtOH) at low temperatures has been studied using titania- and silica-supported platinum nanocrystallites with different sizes in a wide range of 1~25 nm, to see if EtOH can be used as a clean, alternative fuel, i.e., one that does not emit sulfur oxides, fine particulates and nitrogen oxides, and if the combustion flue gas can be used for directly heating the interior of greenhouses. The results of $H_2-N_2O$ titration on the supported Pt catalysts with no calcination indicate a metal dispersion of $0.97{\pm}0.1$, corresponding to ca. 1.2 nm, while the calcination of 0.65% $Pt/SiO_2$ at 600 and $900^{\circ}C$ gives the respective sizes of 13.7 and 24.6 nm when using X-ray diffraction technique, as expected. A comparison of EtOH combustion using $Pt/TiO_2$ and $Pt/SiO_2$ catalysts with the same metal content, dispersion and nanoparticle size discloses that the former is better at all temperatures up to $200^{\circ}C$, suggesting that some acid sites can play a role for the combustion. There is a noticeable difference in the combustion characteristics of EtOH at $80{\sim}200^{\circ}C$ between samples of 0.65% $Pt/SiO_2$ consisting of different metal particle sizes; the catalyst with larger platinum nanoparticles shows higher intrinsic activity. Besides the formation of $CO_2$, low-temperature combustion of EtOH can lead to many other pathways that generate undesired byproducts, such as formaldehyde, acetaldehyde, acetic acid, diethyl ether, and ethylene, depending strongly on the catalyst and reaction conditions. A 0.65% $Pt/SiO_2$ catalyst with a Pt crystallite size of 24.6 nm shows stable performances in EtOH combustion at $120^{\circ}C$ even for 12 h, regardless of the space velocity allowed.

Amination of Ethanol over Large Pore Zeolites (큰 기공 제올라이트에서 에탄올의 아민화반응)

  • Jeon, Hee-Young;Jeon, Seong-Hee;Lee, Cheon-Jae;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.14 no.2
    • /
    • pp.87-94
    • /
    • 2008
  • The catalytic properties of large pore zeolite (mordenite, beta, and Y) with 12-membered rings were comparatively evaluated in the synthesis of diethylamines from ethanol amination. The number of strong acid sites, which obviously promoted the formation of mono- and diethylamines, was decreased with the increase of Si/Al ratio of the zeolites that were used. H-beta and H-Y zeolites with multidimensional pore channels favorably formed diethylether by the dimerization of ethanol, due to their large cage volumes and low acid strength. On the other hand, H-mordenite which has one dimensional straight channel was shown to be suitable for the formation of mono- and diethylamine which are well known as the useful intermediates of fine chemicals.

  • PDF

Characterization of the v-cath Gene of Bombyx mori Nuclear Polyhedrosis Virus K1

  • Lee, Kwang Sik;Li, Jianhong;Je, Yeon Ho;Woo, Soo Dong;Sohn, Hung Dae;Jin, Byung Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.9 no.2
    • /
    • pp.217-223
    • /
    • 2004
  • A cathepsin L-like cysteine protease, v-cath, encoded by the baculovirus has been shown to playa role in host liquefaction. We have identified a v-cath gene in the silkworm virus, Bombyx mori nuclear polyhedrosis virus (BmNPV) K1 strain. The 969 bp v-cath has an open reading frame of 323 amino acids. A putative cleavage site and catalytic sites were conserved in BmNPV-K1 v-cath. The predicted three-dimensional structure of BmNPV-K1 v-cath revealed that the overall fold of BmNPV-K1 v-cath is similar to that of other proteases of the papain family. The deduced amino acid sequence of BmNPV-K1 v-cath showed 98% and 97% protein sequence identity to BmNPV T3 strain and to Autographa californica nuclear polyhedrosis virus, respectively. The BmNPV-K1 v-cath differed at 4 amino acid positions from BmNPV T3. The v-cath gene in BmNPV-K1 genome is located on the EcoRV 6 kb and XhoI 9 kb fragments. Northern hybridization analysis of BmNPV K1 v-cath gene revealed that it is expressed late in infection.

Crystal Structure of Thiolase from Clostridium butyricum (Clostridium butyricum 유래 Thiolase의 입체구조규명 연구)

  • Kim, Eun-Jung;Kim, Kyung-Jin
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.353-358
    • /
    • 2016
  • Thiolase is an enzyme that catalyzes condensation reactions between two acetyl-CoA molecules to produce acetoacetyl-CoA. As thiolase catalyzes is the first reaction in the production of n-butanol, knowledge of the molecular and regulatory mechanism of the enzyme is crucial for synthesizing high-value biofuel. Thiolase from Clostridium butyricum (CbTHL) was expressed, purified, and crystallized. X-ray diffraction data were collected from the crystals, and the 3-dimentional structure of the enzyme was determined at 2.0 Å. The overall structure of thiolase was similar to that of type II biosynthetic thiolases, such as thiolase from C. acetobutylicum (CaTHL). The superposition of this structure with that of CaTHL complexed with CoA revealed the residues that comprise the catalytic and substrate binding sites of CbTHL. The catalytic site of CbTHL contains three conserved residues, Cys88, His349, and Cys379, which may function as a covalent nucleophile, general base, and second nucleophile, respectively. For substrate binding, the way in which CbTHL stabilized the ADP moiety of CoA was unlike that of other thiolases, whereas the stabilization of β-mercaptoethyamine and pantothenic acid moieties of CoA was quite similar to that of other enzymes. The most interesting observation in the CbTHL structure was that the enzyme was regulated through redox-switch modulation, using a reversible disulfide bond.

Pd/Pd3Fe Alloy Catalyst for Enhancing Hydrogen Production Rate from Formic Acid Decomposition: Density Functional Theory Study (개미산 분해 반응에서 수소 생산성 증대를 위한 Pd/Pd3Fe 합금 촉매: 범밀도 함수 이론 연구)

  • Cho, Jinwon;Han, Jonghee;Yoon, Sung Pil;Nam, Suk Woo;Ham, Hyung Chul
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.270-274
    • /
    • 2017
  • Formic acid has been known as one of key sources of hydrogen. Among various monometallic catalysts, hydrogen can be efficiently produced on Pd catalyst. However, the catalytic activity of Pd is gradually reduced by the blocking of active sites by CO, which is formed from the unwanted indirect oxidation of formic acid. One of promising solutions to overcome such issue is the design of alloy catalyst by adding other metal into Pd since alloying effect (such as ligand and strain effect) can increase the chance to mitigate CO poisoning issue. In this study, we have investigated formic acid deposition on the bimetallic $Pd/Pd_3Fe$ core-shell nanocatalyst using DFT (density functional theory) calculation. In comparison to Pd catalyst, the activation energy of formic acid dehydrogenation is greatly reduced on $Pd/Pd_3Fe$ catalyst. In order to understand the importance of alloying effects in catalysis, we decoupled the strain effect from ligand effect. We found that both strain effect and ligand effect reduced the binding energy of HCOO by 0.03 eV and 0.29 eV, respectively, compared to the pure Pd case. Our DFT analysis of electronic structure suggested that such decrease of HCOO binding energy is related to the dramatic reduction of density of state near the fermi level.

Control of Catalytic Properties of Heteropoly Acid by Blending it with a Polymer (고분자와의 블랜딩에 의한 헤테로폴리산의 촉매 특성 제어)

  • Song, In Kyu;Lee, Jong Koog;Lee, Wha Young
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.819-824
    • /
    • 1994
  • A membrane-like $H_3PMo_{12}O_{40}$-polysulfone film was prepared by blending $H_3PMo_{12}O_{40}$ with polysulfone using dimethylformamide as a common solvent. SEM and EDX analysis showed that $H_3PMo_{12}O_{40}$ was uniformly and finely distributed in the film catalyst. The ESCA measurement also revealed that the oxidation state of Mo was not changed. The $H_3PMo_{12}O_{40}$-polysulfone catalyst showed lower activity for acid-catalyzed reaction and higher activity for oxidation reaction than $H_3PMo_{12}O_{40}$ in ethanol conversion reaction. The oxidation activity of the film catalyst was about 10 times higher than $H_3PMo_{12}O_{40}$. The decrease of acidic activity was due to DMF strongly adsorbed in acid sites of $H_3PMo_{12}O_{40}$, whereas the increase of oxidation activity was mainly due to uniform distribution of $H_3PMo_{12}O_{40}$. Adsorption results showed that the surface character of $H_3PMo_{12}O_{40}$ was drastically increased, while the bulk property of that was almost same after blending. It is suggested that the control of surface/bulk property as well as acid/redox property of heteropoly acid would be possible by blending it with a polymer.

  • PDF

Homology Modeling and Active Sites of PolyMG-specific Alginate Lyase from Stenotrophomonas maltophilia KJ-2 (Stenotrophomonas maltophilia KJ-2 균주로부터 얻은 PolyMG-specific 알긴산분해효소의 상동성 모델링 및 활성자리 연구)

  • Kim, Hee Sook
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.128-136
    • /
    • 2014
  • Alginates are linear acidic polysaccharides composed with (1-4)-linked ${\alpha}$-L-guluronic acid and ${\beta}$-Dmannuronic acid. Alginate can be degraded by diverse alginate lyases, which cleave the alginate using a ${\beta}$-elimination reaction and produce unsaturated uronate oligomers. A gene for a polyMG-specific alginate lyase possessing a novel structure was previously identified and cloned from Stenotrophomonas maltophilia KJ-2. Homology modeling of KJ-2 polyMG-specific alginate lyase showed it belongs to the PL6 family, whereas three Azotobacter vinelandii polyMG lyases belong to the PL7 family of polysaccharide lyases. From $^1H$-NMR spectra data, KJ-2 polyMG lyase preferably degraded the M-${\beta}$(1-4)-G glycosidic bond than the G-${\alpha}$(1-4)-M glycosidic bond. Seventeen mutants were made by site-directed mutagenesis, and alginate lyase activity was analyzed. Lys220Ala, Arg241Ala, Arg241Lys, and Arg265Ala lost alginate lyase activity completely. Arg155Ala, Gly303Glu, and Tyr304Phe also lost the activity by 60.7-80.1%. These results show that Arg155, Lys220, Arg241, Arg265, Gly303, and Tyr304 are important residues for catalytic activity and substrate binding.

Dehydration of Lactic Acid to Bio-acrylic Acid over NaY Zeolites: Effect of Calcium Promotion and KOH Treatment (NaY 제올라이트 촉매 상에서 젖산 탈수반응을 통한 바이오아크릴산 생산: Ca 함침 및 KOH 처리 영향)

  • Jichan, Kim;Sumin, Seo;Jungho, Jae
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.269-277
    • /
    • 2022
  • With the recent development of the biological enzymatic reaction industry, lactic acid (LA) can be mass-produced from biomass sources. In particular, a catalytic process that converts LA into acrylic acid (AA) is receiving much attention because AA is used widely in the petrochemical industry as a monomer for superabsorbent polymers (SAP) and as an adhesive for displays. In the LA conversion process, NaY zeolites have been previously shown to be a high-activity catalyst, which improves AA selectivity and long-term stability. However, NaY zeolites suffer from fast deactivation due to severe coking. Therefore, the aim of this study is to modify the acid-base properties of the NaY zeolite to address this shortcoming. First, base promoters, Ca ions, were introduced to the NaY zeolites to tune their acidity and basicity via ion exchange (IE) and incipient wetness impregnation (IWI). The IWI method showed superior catalyst selectivity and stability compared to the IE method, maintaining a high AA yield of approximately 40% during the 16 h reaction. Based on the NH3- and CO2-TPD results, the calcium salts that impregnated into the NaY zeolites were proposed to exit as an oxide form mainly at the exterior surface of NaY and act as additional base sites to promote the dehydration of LA to AA. The NaY zeolites were further treated with KOH before calcium impregnation to reduce the total acidity and improve the dispersion of calcium through the mesopores formed by KOH-induced desilication. However, this KOH treatment did not lead to enhanced AA selectivity. Finally, calcium loading was increased from 1wt% to 5wt% to maximize the amount of base sites. The increased basicity improved the AA selectivity substantially to 65% at 100% conversion while maintaining high activity during a 24 h reaction. Our results suggest that controlling the basicity of the catalyst is key to obtaining high AA selectivity and high catalyst stability.

Effect of a Phospholamban Peptide on the Skeletal Sarcoplasmic Reticulum $Ca^{2+}$ Transport (골격근 근장그물 칼슘이동에 대한 Phospholamban 펩타이드의 조절)

  • Kim, Hae-Won;Lee, Hee-Ran
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.1
    • /
    • pp.117-124
    • /
    • 1994
  • Phospholamban is the regulator of $Ca^{2+}-ATPase$ in cardiac sarcoplasmic reticulum(SR). The mechanism of regulation appears to involve inhibition by dephosphorylated phospholamban. Phosphorylation of phospholamban relieves this inhibition. Recently, there has been a report that the cytoplasmic domain (amino acids 1-25) of phospholamban is insufficient to inhibit the $Ca^{2+}$ pump. To explore the domains of phospholamban responsible for $Ca^{2+}-ATPase$ inhibitory activity, we examined the effect of a synthetic phospholamban peptide consisting of amino acid residues 1-25 on $Ca^{2+}$ uptake by reconstituted skeletal SR $Ca^{2+}-ATPase$. The $Ca^{2+}-ATPase$ of skeletal SR was purified and reconstituted in proteoliposomes containing phosphatidylcholine (PC) or phosphatidylcholine: phosphatidylserine (PC:PS). Inclusion of a phospholamban peptide in PC proteoliposomes was associated with significant inhibition of the initial rates of $Ca^{2+}$ uptake at pCa 6.0, and phosphorylation of this peptide by the catalytic subunit of cAMP-dependent protein kinase reversed the inhibitory effect on the $Ca^{2+}$ pump. Similar effects of phospholamban peptide were also observed using PC:PS proteoliposomes. Based on these results, we could conclude that the cytoplasmic domain of phospholamban, containing the phosphorylation sites, by itself is sufficient to inhibit the $Ca^{2+}$ pump of SR.

  • PDF