• Title/Summary/Keyword: catalyst layer

Search Result 357, Processing Time 0.026 seconds

Morphology Controlled Cathode Catalyst Layer with AAO Template in Polymer Electrolyte Membrane Fuel Cells (AAO를 사용한 고분자전해질 연료전지의 공기극 촉매층 구조 제어)

  • Cho, Yoon-Hwan;Cho, Yong-Hun;Jung, Nam-Gee;Ahn, Min-Jeh;Kang, Yun-Sik;Chung, Dong-Young;Lim, Ju-Wan;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.109-114
    • /
    • 2012
  • The cathode catalyst layer in polymer electrolyte membrane fuel cells (PEMFCs) was fabricated with anodic aluminum oxide (AAO) template and its structure was characterized with scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The SEM analysis showed that the catalyst layer was fabricated the Pt nanowire with uniform shape and size. The BET analysis showed that the volume of pores in range of 20-100 nm was enhanced by AAO template. The electrochemical properties with the membrane electrode assembly (MEA) were evaluated by current-voltage polarization measurements and electrochemical impedance spectroscopy. The results showed that the MEA with AAO template reduced the mass transfer resistance and improved the cell performance by approximately 25% through controlling the structure of catalyst layer.

Fabrication and Sensing Characteristics of Multi-Walled Carbon Nanotube Gas Sensor for No2 Detection (이산화질소 감지용 다중벽 탄소나노튜브 가스센서의 제작 및 감응 특성)

  • 조우성;문승일;김영조;이윤희;주병권
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.294-298
    • /
    • 2004
  • Carbon nanotubes(CNTs) were synthesized by thermal chemical vapor deposition(CVD) method. To fabricate CNT gas sensor, catalyst metal layer was deposited on microstructure. The CNT gas detecting layer was grown by thermal CVD method on the catalyst metal layer. In order to investigate the gas sensing characteristics of the fabricated CNT gas sensor, it was exposed in NO$_2$ gas and sensitivity, response, and recovery time were measured. As the result, this sensor has better reproductibility and faster recovery time than another CNT gas sensors.

Preparation and Reaction Studies of $Pt/Al_2O_3$ Model Catalysts

  • Kim, Chang-Min;Gabor A. Somorjai
    • Journal of the Korean Vacuum Society
    • /
    • v.3 no.4
    • /
    • pp.414-419
    • /
    • 1994
  • Surface of Pt/$Al_2O_3$ model catalyst was produced on an aluminum foil with surface area of 1 $cm^2$ The aluminum surface was oxidized under $10 ^5Torr$Torr oxygen and platinum was deposited on top of the oxide layer using a plasma evaporation source. Conversion of I-butene was performed on the model catalyst surface. Isomerization was the major reaction in I-butene conversion on the aluminum oxide layer. Addition of Pt on the aluminum oxide layer induces hydrogenation of I-butene. Selectivity for the hydrogenation increases as the amount of Pt on alumina increases.

  • PDF

Effect of Metal Ni Atomic Layer Deposition Coating on Ni/YSZ, Anode of Solid Oxide Fuel Cells (SOFCs) (고체산화물 연료전지의 Anode인 Ni/YSZ에 Ni 원자층 증착 코팅의 효과)

  • Kim, Jun Ho;Mo, Su In;Park, Gwang Seon;Kim, Hyung Soon;Kim, Do Heyoung;Yun, Jeong Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.61-66
    • /
    • 2022
  • This study is to increase the surface area and maximize the effect of the catalyst by coating a nanometersized metal catalyst material on the anode layer using atomic layer deposition (ALD) technology. ALD process is known to produce uniform films with well-controlled thickness at the atomic level on substrates. We measured the performance by coating metals (Ni) on Ni/YSZ, which is the most widely known anode material for solid oxide fuel cells. ALD coatings began to show a decrease in cell performance over 3 nm coatings.

REDUCTION CHARACTERISTICS OF NOx STORAGE CATALYST FOR LEAN-BURN NATURAL GAS VEHICLES

  • Lee, C.H.;Choi, B.C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.667-674
    • /
    • 2007
  • Various types of NOx storage catalysts for NGV's were designed, manufactured, and tested in this work on a model gas test bench. As in most of other studies on NOx storage catalyst, alkaline earth metal barium(Ba) was used as the NOx adsorbing substance. The barium-based experimental catalysts were designed to contain different amounts of Ba and precious metals at various ratios. Reaction tests were performed to investigate the NOx storage capacity and the NOx conversion efficiency of the experimental catalysts. From the results, it was found that when Ba loading of a catalyst was increased, the quantity of NOx stored in the catalyst increased in the high temperature range over 350. With more Ba deposition, the NOx conversion efficiency as well as its peak value increased in the high temperature range, but decreased in the low temperature range. The best of de-NOx catalyst tested in this study was catalyst B, which was loaded with 42.8 g/L of Ba in addition to Pt, Pd and Rh in the ratio of 7:7:1. In the low temperature range under $450^{\circ}C$, the NOx conversion efficiencies of the catalysts were lower when $CH_4$, instead of either $C_3H_6$ or $C_3H_8$, was used as the reductant.

Field-emission characteristics of carbon nanotubes: The effect of catalyst preparation (촉매처리 방법에 따른 탄소 나노튜브의 전계방출 특성)

  • Park, Chang-Kyun;Yun, Sung-Jun;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.38-39
    • /
    • 2006
  • We present experimental results that regard the effects of catalyst preparation on the structural and field-emissive properties of CNTs. The CNTs used in this research have been synthesized using the inductively coupled plasma-chemical vapor deposition (ICP-CVD) method. Catalyst materials (such as Ni, Co, and Invar 426) are varied and deposited on buffer films by RF magnetron sputtering. Prior to growth of CNTs, $NH_3$ plasma etching has also been performed with varying plasma etching time and power. For all the CNTs grown, nanostructures and morphologies are analyzed using Raman spectroscopy and FESEM, in terms of buffer films, catalyst materials, and pre-treatment conditions. Furthermore, the field electron-emission of CNTs are measured and characterized in terms of the catalyst preparation environments. The CNTs grown on Nicatalyst layer would be more effectual for enhancing the growth rate and achieving the vertical-alignment of CNTs rather than other buffer materials from results of SEM study. The crystalline graphitic structure of CNTs is improved as the catalyst dot reaches a critical size. Also, the field-emission result shows that the CNTs using Ni catalyst would be more favorable for improving electron-emission capabilities of CNTs compared with other samples.

  • PDF

Effect of an AI underlayer on the Growth of Carbon Nanotubes and Their Field Emission Characteristics (알루미늄 하부층이 탄소나노튜브의 성장 및 전계방출 특성에 미치는 영향)

  • Lee, Seung-Hwan;Goak, Jeung-Choon;Lee, Han-Sung;Lee, Nae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.162-172
    • /
    • 2008
  • We studied the effect of an Al underlayer on the growth of carbon nanotubes (CNTs) and their field emission characteristics, First of all, CNTs were grown on the Invar catalyst layers with different thickness of 1 to 10 nm, showing that the CNT length was saturated for the catalyst 5 nm or thicker. The CNTs grown on the 5-nm-thick catalyst were ${\sim}10{\mu}m$ long and ${\sim}30nm$ in diameter. Second, an Al underlayer was applied between the catalyst layer and the Ti diffusion barrier to reduce the diameters of CNTs for better field emission properties by forming spherical Al oxide particles on which smaller catalyst nanoparticles would occur. The optimal thickness of an Al underlayer underneath the 5-nm-thick catalyst was ${\sim}15nm$, producing the CNTs with the length of ${\sim}15{\mu}m$ and the diameter of ${\sim}15nm$. The field emission measurements, following the tape activation, showed that the thinner and longer CNTs gave rise to better field emission performance with the lower turn-on and threshold electric fields.

Design Factors of Membrane Electrode Assembly for Direct Methanol Fuel Cells. (직접 메탄올 연료전지용 막-전극 접합체의 설계 인자에 관한 연구)

  • Cho, Jae-Hyung;Hwang, Sang-Youp; Kim, Soo-Kil;Ahn, Dong-June;Lim, Tae-Hoon;Ha, Heung-Yong
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.293-299
    • /
    • 2007
  • Direct coating of catalyst layer on the $Nafion^{(R)}$ membrane has been optimized in the process of fabrication of membrane electrode assembly (MEA) to enhance the performance of direct methanol fuel cell (DMFC). In this method, the contact resistance at the interface of the catalyst layer and the membrane was found to be low. The effect of catalyst loading, thickness of membrane and the gas diffusion layer (GDL) with or without the presence of micro-porous layer (MPL) on the performance of the MEA was also investigated. The MEA fabricated by the above-mentioned method exhibited a performance of $147\;mW/cm^2$ and $100\;mW/cm^2$ at $80^{\circ}C$ and $60^{\circ}C$, respectively, with the catalysts loading of $4\;mg/cm^2$.

  • PDF

The effect of initial Pd catalyst oxidation stale on CH$_4$sensitivity of SnO$_2$thin film sensor (Pd 촉매의 부분 산화 조절을 이용한 SnO$_2$박막 센서의 CH$_4$감도 변화 연구)

  • Choi, W. K.;Cho, J.;Cho, J. S.;Song, J. H.;Jung, H. J.;Koh, S. K.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.2
    • /
    • pp.45-49
    • /
    • 1999
  • A flammable gas sensor based on the $SnO_2$thin film deposited by the reactive ion assisted deposition was fabricated and ultra-thin Pd layer as catalyst was adsorbed at surface by ion beam sputtering. The initial oxidation states of Pd catalyst were controlled to investigate the role of Pd in the sensing process of inflammale gas sensor through annealing in air and vacuum respectively. The Pd catalyst existing in pure metallic state showed the sensitivity higher than that of PdO. The result might be closely related to the fact that PdO as a surface acceptor would receive electrons via Pd sub-channel from $SnO_2$, and thus which reduces the sensitivity and delay the response time.

  • PDF

Effect of MEA fabrication on the performance degradation of DMFC (MEA 제조 방법에 따른 직접 메탄올 연료전지의 성능저하 현상 평가)

  • Cho, Yoon-Hwan;Cho, Yong-Hun;Park, Hyun-Seo;Won, Ho-Youn;Sung, Yung-Eun
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.60-67
    • /
    • 2007
  • Catalyst coated membrane [CCM] type and catalyst coated substrate [CCS] type of membrane electrode assembly [MEA] were manufactured and evaluated their performance. Degradation test were conducted to find the difference of long term stability in two types of MEA and the factor for performance degradation problem occurred. Performance degradation test of single cell in two different types of MEA were carried out when current density was $200mA/cm^{2}$. The degradation test had proceeded for 230 hours and performance degradation was checked by I-V curve and impedance measurement at regular intervals. Also, MEA before/after operation and changes of catalyst layer were characterized by SEM, TEM, and XRD. Maximum power density of CCM type was higher than that of CCS type. Meanwhile, an increase of particle size of catalyst and an increase of impedance resistance after long term operation were observed. In the case of using CCM type MEA, the performance was deteriorated 38% of initial performance. In the case of using CCS type MEA, the performance was deteriorated 43% of initial performance. In consideration of difference of initial performance, performance of CCM type is higher than that of CCS type but both types had similar problems during degradation test.

  • PDF