DOI QR코드

DOI QR Code

Morphology Controlled Cathode Catalyst Layer with AAO Template in Polymer Electrolyte Membrane Fuel Cells

AAO를 사용한 고분자전해질 연료전지의 공기극 촉매층 구조 제어

  • Cho, Yoon-Hwan (World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, Seoul National University (SNU)) ;
  • Cho, Yong-Hun (School of Advanced Materials Engineering, Kookmin University) ;
  • Jung, Nam-Gee (World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, Seoul National University (SNU)) ;
  • Ahn, Min-Jeh (World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, Seoul National University (SNU)) ;
  • Kang, Yun-Sik (World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, Seoul National University (SNU)) ;
  • Chung, Dong-Young (World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, Seoul National University (SNU)) ;
  • Lim, Ju-Wan (World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, Seoul National University (SNU)) ;
  • Sung, Yung-Eun (World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, Seoul National University (SNU))
  • 조윤환 (서울대학교 화학생물공학부) ;
  • 조용훈 (국민대학교 신소재공학부) ;
  • 정남기 (서울대학교 화학생물공학부) ;
  • 안민제 (서울대학교 화학생물공학부) ;
  • 강윤식 (서울대학교 화학생물공학부) ;
  • 정동영 (서울대학교 화학생물공학부) ;
  • 임주완 (서울대학교 화학생물공학부) ;
  • 성영은 (서울대학교 화학생물공학부)
  • Received : 2012.04.17
  • Accepted : 2012.05.30
  • Published : 2012.05.31

Abstract

The cathode catalyst layer in polymer electrolyte membrane fuel cells (PEMFCs) was fabricated with anodic aluminum oxide (AAO) template and its structure was characterized with scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The SEM analysis showed that the catalyst layer was fabricated the Pt nanowire with uniform shape and size. The BET analysis showed that the volume of pores in range of 20-100 nm was enhanced by AAO template. The electrochemical properties with the membrane electrode assembly (MEA) were evaluated by current-voltage polarization measurements and electrochemical impedance spectroscopy. The results showed that the MEA with AAO template reduced the mass transfer resistance and improved the cell performance by approximately 25% through controlling the structure of catalyst layer.

고분자전해질 연료전지 (PEMFC)의 공기극을 양극산화 알루미늄 (AAO) 템플레이트를 이용하여 제조하고 촉매층의 구조적 특성을 주사현미경 (SEM) 측정과 BET (Brunauer-Emmett-Teller) 분석을 통해 알아보았다. SEM 측정을 통해 일정한 크기와 모양의 Pt nanowire 가 규칙적으로 형성된 것을 확인할 수 있었다. BET 분석을 통해 AAO 템플레이트로 인하여 20-100 nm 크기의 기공 분포가 증가한 것을 확인하였다. 단위전지 성능평가와 임피던스 측정을 통하여 막-전극접합체 (MEA)의 전기화학적 특성을 분석하였다. 그 결과, AAO 템플레이트를 이용하여 제조한 MEA는 촉매층의 구조 개선으로 인하여 물질 전달 저항을 감소시킬 수 있었으며, 25%의 단위전지 성능이 향상되었다.

Keywords

References

  1. E. A. Ticianelli, C. R. Derouin, A. Redondo, and S. Srinivasan, 'Methods to advance technology of proton exchange membrane fuel cells', J. Electrochem. Soc., 135, 2209 (1998). https://doi.org/10.1149/1.2096240
  2. L. Carrette, K. A. Friedrich, and U. Stimming, 'Fuel cells: Principles, types, fuels, and applications', ChemPhysChem, 1, 163 (2000).
  3. S. G. Chalk and J. F. Miller, 'Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems', J. Power Sources, 159, 73 (2006). https://doi.org/10.1016/j.jpowsour.2006.04.058
  4. Y.-H. Cho, B. Choi, Y.-H. Cho, H.-S. Park, and Y.-E. Sung, 'Pd-based PdPt(19:1)/C electrocatalyst as an electrode in PEM fuel cell', Electrochem. Commun., 9, 379 (2007).
  5. H. Li, G. Sun, N. Li, S. Sun, D. Su, and Q. Xin, 'Design and preparation of highly active Pt-Pd/C catalyst for the oxygen reduction reaction', J. Phys. Chem. C, 111, 5605 (2007). https://doi.org/10.1021/jp067755y
  6. S. J. Seo, H.-I. Joh, H. T. Kim, and S. H. Moon, 'Performance of Pt-Co/C prepared by the selective deposition of Co on Pt as a cathode in PEMFCs', J. Power Sources, 163, 403 (2006) https://doi.org/10.1016/j.jpowsour.2006.09.008
  7. E. H. Yu, S. Cheng, K. Scott, and B. Logan, 'Microbial fuel cell performance with non-Pt cathode catalysts', J. Power Sources, 171, 275 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.010
  8. H.-S. Park, Y.-H. Cho, Y.-H. Cho, C. R. Jung, J. H. Jang, and Y.-E. Sung, 'Performance enhancement of PEMFC through temperature control in catalyst layer fabrication', Electrochim. Acta, 53, 763 (2007). https://doi.org/10.1016/j.electacta.2007.07.046
  9. M. S. Saha, D. K. Paul, B. A. Peppley, and K. Karan, 'Fabrication of catalyst-coated membrane by modified decal transfer technique', Electrochem. Commun., 12, 410 (2010). https://doi.org/10.1016/j.elecom.2010.01.006
  10. Y.-G. Yoon, G.-G. Park, T.-H. Yang, J.-N. Han, W.-Y. Lee, and C.-S. Kim, 'Effect of pore structure of catalyst layer in a PEMFC on its performance', Int. J. Hydrogen Energy, 28, 657 (2003). https://doi.org/10.1016/S0360-3199(02)00156-8
  11. V. Mehta and J. S. Cooper, 'Review and analysis of PEM fuel cell design and manufacturing', J. Power Sources, 114, 32 (2003). https://doi.org/10.1016/S0378-7753(02)00542-6
  12. J. Zhao, X. He, L. Wang, J. Tian, C. Wan, and C. Jiang, 'Addition of NH4HCO3 as pore-former in membrane electrode assembly for PEMFC', Int. J. Hydrogen Energy, 32, 380 (2007). https://doi.org/10.1016/j.ijhydene.2006.06.057
  13. C. S. Kong, D.-Y. Kim, H.-K. Lee, Y.-G. Shul, and T.- H. Lee, 'Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells', J. Power Sources, 108, 185 (2002). https://doi.org/10.1016/S0378-7753(02)00028-9
  14. T. V. Reshetenko, H. T. Kim, and H. J. Kweon, 'Cathode structure optimization for air-breathing DMFC by application of pore-forming agents', J. Power Sources, 171, 433 (2007). https://doi.org/10.1016/j.jpowsour.2007.05.105
  15. H. Wang, C. Xu, F. Cheng, and S. Jiang, 'Pd nanowire arrays as electrocatalysts for ethanol electrooxidation', Electrochem. Commun., 9, 1212 (2007). https://doi.org/10.1016/j.elecom.2007.01.026
  16. L. Liu, E. Pippel, R. Scholz, and U. Gosele, 'Nanoporous Pt-Co alloy nanowires: fabrication, characterization, and electrocatalytic properties', Nano Lett. 9, 4352 (2009). https://doi.org/10.1021/nl902619q
  17. C.-H. Cui, H.-H. Li, and S.-H. Yu, 'Large scale restructuring of porous Pt-Ni nanoparticle tubes for methanol oxidation: a highly reactive, stable, and restorable fuel cell catalyst', Chem. Sci., 2, 1611 (2011). https://doi.org/10.1039/c1sc00233c
  18. S. Park, Y. J. Song, H. Boo, J.-H. Han, and T. D. Chung, 'Arrayed hybrid nanoporous Pt pillars', Electrochem. Commun., 11, 2225 (2009). https://doi.org/10.1016/j.elecom.2009.09.036
  19. M. Uchida, Y. Aoyama, N. Eda, and A. Ohta, 'Investigation of the microstructure in the catalyst layer and effects of both perfluorosulfonate ionomer and PTFE-loaded carbon on the catalyst layer of polymer electrolyte fuel cells', J. Electrochem. Soc., 142, 4143 (1995). https://doi.org/10.1149/1.2048477
  20. M. Uchida, Y. Fukuoka, Y. Sugawara, N. Eda, and A. Ohta, 'Effects of microstructure of carbon support in the catalyst layer on the performance of polymerelectrolyte fuel cells', J. Electrochem. Soc., 143, 2245 (1996). https://doi.org/10.1149/1.1836988
  21. D. Malevich, E. Halliop, B. A. Peppley, J. G. Pharoah, and K. Karan, 'Investigation of charge-transfer and mass-transfer resistances in PEMFCs with microporous layer using electrochemical impedance spectroscopy', J. Electrochem. Soc., 156, B216 (2009). https://doi.org/10.1149/1.3033408