• 제목/요약/키워드: catalyst layer

검색결과 357건 처리시간 0.037초

메탄의 부분산화반응으로부터 수소제조를 위한 촉매담체(SPK, SPM) 제조 및 Ru 담지 촉매의 활성도 조사 (Catalyst Carriers Preparation and Investigation of Catalytic Activities for Partial Oxidation of Methane to Hydrogen over Ru Impregnated on SPK and SPM Catalysts)

  • 서호준;번세검;김용성;정도성;강웅일;조영복;김상채;권오윤;선우창신;유의연
    • Korean Chemical Engineering Research
    • /
    • 제46권3호
    • /
    • pp.581-584
    • /
    • 2008
  • 중기공성 층상화합물의 촉매 담체를 제조하고, 메탄으로부터 수소를 제조하기 위한 활성도를 평가하기 위해서 고정층 상압 유통식 반응기를 사용하여 Ru(3)/SPK와 Ru(3)/SPM 촉매상에서 메탄의 부분산화반응를 수행하였다. 또한, BET, TEM, TPR를 사용하여 촉매 및 담체의 특성을 분석하였다. 촉매 담체인 실리카 지주 $H^+-kenyaite$(SPK) 와 $H^+-magadite$(SPM)의 BET 비 표면적은 각각 $760m^2/g$$810m^2/g$ 이었고, 평균기공크기는 각각 3.0 nm와 2.6 nm 이었다. $N_2$-흡착등온선은 히스테리시스가 잘 발달된 IV형이었으며, TEM으로 중기공성 층상화합물이 잘 만들어졌음을 확인할 수 있었다. Ru(3)/SPK와 Ru(3)/SPM 촉매는 973 K, $CH_4/O_2=2$, $1.25{\times}10^{-5}g-Cat.hr/ml$의 반응조건에서 각각 90%, 87%의 수소의 수율를 얻을 수 있었으며, 약 60시간 까지도 높은 수소 수율을 유지하였다. Ru(3)/SPK와 Ru(3)/SPM 촉매의 TPR 피크는 각각 453K와 413K의 근방에서 비슷한 환원도를 보여주었다. 이러한 분석자료로부터 SPK와 SPM은 산화반응의 촉매 담체로서 구비조건(비 표면적, 열안정성, 평균기공크기 등)를 갖추고 있음을 알 수 있었다.

인산형 연료전지의 다공성전극 제조에 관한 기초적연구 (Fundamental Studies on the Manufactruring of prouse Electrode for Plosphoric Acid Fuel Cell.)

  • 김영우;박정일;이주성
    • 한국표면공학회지
    • /
    • 제22권2호
    • /
    • pp.55-61
    • /
    • 1989
  • A fuel cell which causes electrochemical ratio of conventional with oxygen consists of mainly there parts, such as electrolyte, fuel and oxidant electrode. IN this paper, most efforts were delivered to manufacturing PETE-bonded gas-diffusion electrode, and preparation methods of the porous electrodes has been discussd. A medio temperature, phosphoric acid fuel cell (PAFC) provided with fuel (hydrogen) and oxygen showed oxygen showed excellent performance characteristics with made electrodes. Performance data obtained from hydrgen-oxygen cell were presented to illustrate their properties. It was found that the optimum amounts of platinum in clectrode for hydrgen-oxygen PAFC were about 3mg/cm3 and the PTFE content of gas diffusion layer and catalyst layer were 25% and 15%, respectively.

  • PDF

Carbon Nanotube Synthesis using Magnetic Null Discharge Plasma Production Technology

  • Sung, Youl-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권4호
    • /
    • pp.532-536
    • /
    • 2007
  • Carbon nanotube (CNT) properties, produced using a magnetic null discharge (MND) plasma production technology, were investigated. We firstly deposited the Fe layer 200 nm in thickness on Si substrate by the magnetic null discharge sputter method at the substrate temperature of $300도C$, and then prepared CNTs on the catalyst layer by using the magnetic null discharge (MND) based CVD method. CNTs were deposited in a gas mixture of CH4 and N2 at a total pressure of 1 Torr by the MND-CVD method. The substrate temperature and the RF power were $650^{\circ}C$ and 600W, respectively. The characterization data indicated that the proposed source could synthesize CNTs even under relatively severe conditions for the magnetic null discharge formation.

배가스 탈질 설비의 유동해석 사례 (Numerical Simulation for Flow Optimization of De-NOx Selective Catalytic Reactor)

  • 고영건;류창국;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제22회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.99-105
    • /
    • 2001
  • For the design of selective catalytic reactors of NOx by $NH_3$, engineering approach can be performed to determine the reactor shape, mixing device and $NH_3$ injection system. This study shows the optimization of guide vanes to improve the flow pattern near the catalyst layer of SCR in a untility boiler. By varying their spacings and shapes, flow performance of guide vanes was analyzed to achieve an uniform velocity distribution which increases the NOx convesion efficiency, and a flow direction normal to the layer which minimises the erosion by the dust in the flue gas. Including these results, experimental and numerical studies for the SCR design were discussed.

  • PDF

Pt/$SnO_2$복합체 박막의 CO 가스감지특성 (Sensing Characteristics of Thin Pt/$SnO_2$Composite Film to CO Gas)

  • 김동현;이상훈;송호근;김광호
    • 한국세라믹학회지
    • /
    • 제37권12호
    • /
    • pp.1135-1139
    • /
    • 2000
  • 본 연구에서는 Pt/Sn $O_2$박막의 CO 감지특성을 향상시키기 위하여 표면 형상을 제어하였다. Pt/Sn $O_2$계 박막센서의 최적 동작온도는 175$^{\circ}C$이었다. Pt가 12초 동안 증착된 Sn $O_2$가 200ppm의 CO 가스에 대하여 1.23의 최대감도를 나타내었고, 그 이상의 Pt 증착시간 증가에 따라 Sn $O_2$위의 Pt의 coverage가 증가하여 센서의 감도를 감소시켰다. 다층박막(multi-layer thin film)의 단층의 Pt/Sn $O_2$복합체 위에 다시 Sn $O_2$및 Pt의 cluster 층들을 연속적으로 증착함으로서 제작되었다. 단지 하나의 Pt 층만을 증착한 Sn $O_2$막보다 다층의 Pt/Sn $O_2$막이 더욱 우수한 감도( $R_{air}$/ $R_{co}$=1.72, CO: 200 ppm)를 나타내었다. Pt/Sn $O_2$다층박막의 우수한 감도의 원인은 Pt와 Sn $O_2$사이의 계면적 증대 때문인 것으로 생각되어 진다.다.

  • PDF

Effect of 11-Mercaptoundecylphosphoric-acid Layer Formation on Gold Surfaces Interacting with Titanium Dioxide Surfaces

  • Park, Jin-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2861-2866
    • /
    • 2010
  • We studied effects of the 11-Mercaptoundecylphosphoric-acid layer formation on gold surfaces that have the interactions with the titanium dioxide surface for design of gold- titanium dioxide distribution. The atomic force microscope (AFM) was used to measure forces between the surfaces as a function of the salt concentration and pH value. The forces were analyzed with the DLVO (Derjaguin-Landau-Verwey-Overbeek) theory, to evaluate the potential and charge density of the surfaces quantitatively for each salt concentration and each pH value. The interpretation for the evaluation was performed with the law of mass action and the ionizable groups on the surface.

ALD Pt 나노입자의 고온 거동에 대한 연구 (Study on the Nanoscale Behavior of ALD Pt Nanoparticles at Elevated Temperature)

  • 안지환
    • 한국정밀공학회지
    • /
    • 제33권8호
    • /
    • pp.691-695
    • /
    • 2016
  • This paper covers the investigation of the microscale behavior of Pt nanostrucures fabricated by atomic layer deposition (ALD) at elevated temperature. Nanoparticles are fabricated at up to 70 ALD cycles, while congruent porous nanostructures are observed at > 90 ALD cycles. The areal density of the ALD Pt nanostructure on top of the SiO2 substrate was as high as 98% even after annealing at $450^{\circ}C$ for 1hr. The sheet resistance of the ALD Pt nanostructure dramatically increased when the areal density of the nanostructure decreased below 85 - 89% due to coarsening at elevated temperature.

Position-Selective Metal Oxide Nanostructures using Atomic Thin Carbon Layer for Hydrogen Gas Sensors

  • Yu, Hak Ki
    • 센서학회지
    • /
    • 제29권6호
    • /
    • pp.369-373
    • /
    • 2020
  • A hydrogen sensor was fabricated by utilizing a bundle of metal oxide nanostructures whose growth positions were selectively controlled by utilizing graphene, which is a carbon of atomic-unit thickness. To verify the reducing ability of graphene, it was confirmed that the multi-composition metal oxide V2O5 was converted into VO2 on the graphene surface. Because of the role of graphene as a reducing catalyst, it was confirmed that ZnO and MoO3 nanostructures were grown at high density only on the graphene surface. The fabricated gas sensor showed excellent sensitivity.

산/염기 제조를 위한 바이폴라막의 물분해 특성 연구 (A Study on water-splitting characteristics of bipolar membranes for acid/base generation)

  • 강문성;문승현;이재석
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1998년도 추계 총회 및 학술발표회
    • /
    • pp.75-78
    • /
    • 1998
  • 1. Introduction : The clean technology using ion exchange membranes have drawn attention increasingly with advancement of the membrane synthesis. Ion exchange membranes have been used for diffusion dialysis, electrodialysis, electrodialytic water splitting and electrodeionization. Bipolar membranes(BPM), consisting of a cation exchange layer and an an_ion exchange layer, can convert a salt to an acid and a base without chemical addition. Using the bipolar membrane, a large quantity of industrial wastes containing salts can be reprocessed to generate acids and bases. Recent development of high performance bipolar membranes enables to further expand the potential use of electrodialysis in the chemical industry. The water-splitting mechanism in the bipolar membrane, however, is a controversial subject yet. In this study bipolar membranes were prepared using commercial ion exchange membranes and hydrophilic polymer as a binder to investigate the effects of the interface hydrophilicity on water-splitting efficiency. In addition, the water splitting mechanism by a metal catalyst was discussed.

  • PDF

Pt-AlGaN/GaN HEMT-based hydrogen gas sensors with and without SiNx post-passivation

  • Vuong, Tuan Anh;Kim, Hyungtak
    • 전기전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.1033-1037
    • /
    • 2019
  • GaN-based sensors have been widely investigated thanks to its potential in detecting the presence of hydrogen. In this study, we fabricated hydrogen gas sensors with AlGaN/GaN heterojunction and investigated how the sensing performance to be affected by SiN surface passivation. The gas sensor employed a high electron mobility transistors (HEMTs) with 30 nm platinum catalyst as a gate to detect the hydrogen presence. SiN layer was deposited by inductively-coupled chemical vapor deposition as post-passivation. The sensors with SiN passivation exhibited hydrogen sensing characteristics with various gas flow rates and concentrations of hydrogen in inert background gas at $200^{\circ}C$ similar to the ones without passivation. Aside from quick response time for both sensors, there are differences in sensitivity and recovery time because of the existence of the passivation layer. The results also confirmed the dependence of sensing performance on gas flow rate and gas concentration.