• Title/Summary/Keyword: cat robot

Search Result 31, Processing Time 0.032 seconds

Real-Time Centralized Soft Motion Control System for High Speed and Precision Robot Control (고속 정밀 로봇 제어를 위한 실시간 중앙 집중식 소프트 모션 제어 시스템)

  • Jung, Il-Kyun;Kim, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.6
    • /
    • pp.295-301
    • /
    • 2013
  • In this paper, we propose a real-time centralized soft motion control system for high speed and precision robot control. The system engages EtherCAT as high speed industrial motion network to enable force based motion control in real-time and is composed of software-based master controller with PC and slave interface modules. Hard real-time control capacity is essential for high speed and precision robot control. To implement soft based real time control, The soft based master controller is designed using a real time kernel (RTX) and EtherCAT network, and servo processes are located in the master controller for centralized motion control. In the proposed system, slave interface modules just collect and transfer all sensor information of robot to the master controller via the EtherCAT network. It is proven by experimental results that the proposed soft motion control system has real time controllability enough to apply for various robot control systems.

Biomimetic Balancing Mechanism for Walking Robot (생체모사를 통한 보행로봇의 균형감에 관한 연구)

  • Kim, Jong Jin;Chung, Seong Youb
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.55-59
    • /
    • 2014
  • A cat is able to quickly recover balance from unstable posture. To observe the balance recovery procedure of the cat, an impulse is applied to the cat while walking on a narrow bridge. We find that it rotates its tail toward the falling direction. In our previous research, the balance recovery procedure is analyzed based on the law of the angular momentum conservation and then a key equation is derived to maintain the balance. However, it did not consider the gravity, so the performance is not good. In this paper, a new dynamic model is proposed using the Lagrangian mechanics. In the method, the gravity is included in the potential energy. Through the proposed dynamic model, controlling the balance of a walking robot is possible.

The Development of Motor Controller based on Network using Optic-EtherCAT (광 EtherCAT을 이용한 네트워크 기반 모터 제어기 개발)

  • Moon, Yong-Seon;Lee, Gwang-Seok;Seo, Dong-Jin;Bae, Young-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.467-472
    • /
    • 2008
  • In this paper, we design, implement and apply network physical layer to 100 BaseFx optical cable interface module based on industrial ethernet protocol which is physical layer of EtherCAT that has ensure its open standard ethernet compatibility which having been provided with real time of control in network of intelligent service robot, can be process numerous data to sensor and motor control system. Through BLDC motor control performance tests, we try to propose suitability as internal network of intelligent service robot and automation system.

Development of a 4-DOF Industrial Robot System

  • Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.1
    • /
    • pp.37-44
    • /
    • 2018
  • In this work, a 4-DOF industrial robot system with three translational and one rotational motions which is widely used in palletizing applications is developed. In order for small robot manufacturing companies to develop their own robot systems for CNC machining and/or general automations, the analysis and design methods of a 4-DOF robot manipulator are presented and the development of a PC-based robot controller with EtherCAT are introduced. It is noted that the robot controller is developed by using Simulink Real-Time, which can provide an integrated environment of easier control algorithm development and data logging. Through position control and accuracy/repeatability measurement results, the developed robot prototype has comparable performances with commercial counterparts. In the future works, the advanced functions of industrial robots such as kinematic calibration, vibration suppression control, computed torque control, etc. will be investigated.

Real-time EtherCAT Master Implementation on Xenomai for a Robot System

  • Moon, Yong-Seon;Ko, Nak-Yong;Lee, Kwang-Seok;Bae, Young-Chul;Park, Jong-Kyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.244-248
    • /
    • 2009
  • This paper describes a real-time EtherCAT Master library. The library is developed using Xenomai. Xenomai is a real-time development framework. It cooperates with the Linux kernel, in order to provide a pervasive, interface-agnostic, hard real-time support to user-space applications, seamlessly integrated into the GNU/Linux environment. The proposed master library implements EtherCAT protocol for master side, and supports Application Programming Interfaces(APIs) for programming of real-time application which controls EtherCAT slave.

Development of Realtime EtherCAT Master Library Using INtime

  • Moon, Yong-Seon;Trong, Tuan Anh Vo;Ko, Nak-Yong;Seo, Dong-Jin;Lim, Seung-Woo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.2
    • /
    • pp.94-98
    • /
    • 2009
  • This paper proposes an architecture of a real-time EtherCAT master library called RtEML. The controls EtherCAT slaves under EtherCAT protocol in real-time. It provides a simple programming interface which is useful in developing robot application in C/C++ or C#. To achieve deterministic, hard real-time control in Microsoft Windows environment without additional hardware, INtime is used. Since INtime is designed specifically to take advantage of the powerful capabilities of the x86 processor architecture, the proposed RtEML achieves microseconds of real-time performance.

Implementation of Motor Driver for Control of AC Servo Motor of Robot (로봇의 다축 모션 제어용 AC 서보 모터 드라이버 구현)

  • Kim, Yong-Jin;Bae, Young-Chul;Kim, Kwang-Heon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.3
    • /
    • pp.553-558
    • /
    • 2012
  • An effort for motion control of multi-axis in robot have been continued recently. In this paper, we propose implementation method for AC servo driver that can be easily motion control of multi-axis in robot. This proposed method implement EtherCAT communication technologies of bi-directional optical communication based on single optical core method that applied WDM for communication between control stage which is upper and AC servo drive stage.