• Title/Summary/Keyword: caspase inhibitor

Search Result 363, Processing Time 0.022 seconds

Anti-Fibrotic Effects of DL-Glyceraldehyde in Hepatic Stellate Cells via Activation of ERK-JNK-Caspase-3 Signaling Axis

  • Md. Samsuzzaman;Sun Yeou Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.425-433
    • /
    • 2023
  • During liver injury, hepatic stellate cells can differentiate into myofibroblast-like structures, which are more susceptible to proliferation, migration, and extracellular matrix generation, leading to liver fibrosis. Anaerobic glycolysis is associated with activated stellate cells and glyceraldehyde (GA) is an inhibitor of glucose metabolism. Therefore, this study aimed to investigate the anti-fibrotic effects of GA in human stellate LX-2 cells. In this study, we used cell viability, morphological analysis, fluorescence-activated cell sorting (FACS), western blotting, and qRT-PCR techniques to elucidate the molecular mechanism underlying the anti-fibrotic effects of GA in LX-2 cells. The results showed that GA significantly reduced cell density and inhibited cell proliferation and lactate levels in LX-2 cells but not in Hep-G2 cells. We found that GA prominently increased the activation of caspase-3/9 for apoptosis induction, and a pan-caspase inhibitor, Z-VAD-fmk, attenuated the cell death and apoptosis effects of GA, suggesting caspase-dependent cell death. Moreover, GA strongly elevated reactive oxygen species (ROS) production and notably increased the phosphorylation of ERK and JNK. Interestingly, it dramatically reduced α-SMA and collagen type I protein and mRNA expression levels in LX-2 cells. Thus, inhibition of ERK and JNK activation significantly rescued GA-induced cell growth suppression and apoptosis in LX-2 cells. Collectively, the current study provides important information demonstrating the anti-fibrotic effects of GA, a glycolytic metabolite, and demonstrates the therapeutic potency of metabolic factors in liver fibrosis.

Design, Syntheses and Biological Evaluations of Nonpeptidic Caspase 3 Inhibitors

  • Kim, Eun-Sook;Yoo, Sung-Eun;Yi, Kyu-Yang;Lee, Sun-Kyung;Noh, Jae-Sung;Jung, Yong-Sam;Kim, Eun-Hee;Jeong, Nak-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.7
    • /
    • pp.1003-1010
    • /
    • 2002
  • Caspase 3, a member of cysteine protease family, is well known as a major apoptosis effector and is involved in cell death as a result of ischemic diseases such as stroke and myocardial infarction, therefore the inhibition of caspase 3 may protect those apoptotic cell damages. During the high-throughput screening of the compounds from the Korea Chemical Bank, berberine derivatives (A and B), an isoquinoline alkaloid, have been identified as potential inhibitors for caspase 3. Based on this finding we carried out molecular modeling study to identify the pharmacophoric elements of berberine structure which interact with a substrate-recognition binding site of caspase 3 and came up with several novel scaffolds. In this report, we will discuss the molecular modeling, syntheses and the enzyme inhibitory activities of these novel compounds.

Effect of Proapoptotic Bcl-2 on Naringenin-induced Apoptosis in Human Leukemia U937 Cells (Naringenin에 의한 인체혈구암세포의 apoptosis 유발에 미치는 pro-apoptotic Bcl-2의 영향)

  • Park, Cheol;Jin, Cheng-Yun;Choi, Tae Hyun;Hong, Su Hyun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.9
    • /
    • pp.1118-1125
    • /
    • 2013
  • Naringenin, a naturally occurring citrus flavonone, is a potentially valuable candidate for cancer chemotherapy. However, the cellular and molecular mechanisms responsible for its anticancer activity are largely unknown. In the present study, we attempted to elucidate the mechanisms responsible for naringenin-induced apoptosis in human leukemic U937 cells. We found that naringenin markedly inhibited the growth of U937 cells by decreasing cell proliferation and inducing apoptosis, which was associated with the activation of caspases. A pan-caspase inhibitor, z-VAD-fmk, significantly inhibited naringenin-induced U937 cell apoptosis, indicating that caspases are key regulators of apoptosis in response to naringenin in U937 cells. Although the levels of antiapoptotic Bcl-2 and proapoptotic Bax proteins remained unchanged in naringenin-treated U937 cells, Bcl-2 overexpression attenuated naringenin-induced apoptosis. Furthermore, combined treatment with naringenin and HA14-1, a small-molecule Bcl-2 inhibitor, effectively increased the apoptosis through enhancement of XIAP down-regulation, Bid cleavage, and caspase activation, suggesting that the synergistic effect was at least partially mediated through the death receptor-mediated apoptosis pathway.

Induction of Apoptosis by β-Lapachone in Hep3B Human Hepatocellular Carcinoma Cells Is Caspase-Dependent and Associated with Inactivation of PI3K/Akt Signaling (Hep3B 인간 간암세포에서 caspase 의존적이며 PI3K/Akt 신호전달의 불활성화와 관련된 β-lapachone의 세포사멸 유도)

  • Jae Im Kwon;Yung Hyun Choi;Hyun Hwangbo
    • Journal of Life Science
    • /
    • v.34 no.2
    • /
    • pp.94-104
    • /
    • 2024
  • β-Lapachone is a natural quinone compound originally obtained from the bark of the lapacho tree (Tabebuia vellanedae), which has been used in traditional medicine in several South and Central American countries for treating various diseases. Although β-lapachone has been reported to have potent anticancer activity in many types of cancer cells, its effect on the proliferation of hepatocellular carcinoma (HCC) cells is still unclear. Therefore, in this study, we investigated the effect of β-lapachone on the proliferation of human HCC Hep3B cells. According to our results, the decrease in cell viability of Hep3B cells caused by β-lapachone was closely related to the induction of apoptosis, which was confirmed through changes in nuclear morphology and flow cytometry. In addition, in Hep3B cells treated with β-lapachone, the expression of Bcl-2, an anti-apoptotic factor, was decreased, while the expression of Bax, an apoptosis inducer, was increased, and the activity of the caspase cascade was also increased. However, in the presence of a pan-caspase inhibitor, β-lapachone-induced apoptosis was weakened, indicating that the induction of apoptosis by β-lapachone was caspase-dependent. Moreover, β-lapachone treatment activated extracellular-regulated kinase (ERK) signaling while inhibiting activation of the phosphoinositide 3 kinase (PI3K)/Akt pathway. Furthermore, the effect of the ERK inhibitor on suppressing the induction of apoptosis by β-lapachone was minimal, and the PI3K inhibitor significantly increased β-lapachone-induced apoptosis. The findings from this study will contribute to a better understanding of the anticancer activity of β-lapachone in HCC cells.

Abrin Induces HeLa Cell Apoptosis by Cytochrome c Release and Caspase Activation

  • Qu, Xiaoling;Qing, Liuting
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.445-453
    • /
    • 2004
  • We identified apoptosis as being a significant mechanism of toxicity following the exposure of HeLa cell cultures to abrin holotoxin, which is in addition to its inhibition of protein biosynthesis by N-glycosidase activity. The treatment of HeLa cell cultures with abrin resulted in apoptotic cell death, as characterized by morphological and biochemical changes, i.e., cell shrinkage, internucleosomal DNA fragmentation, the occurrence of hypodiploid DNA, chromatin condensation, nuclear breakdown, DNA single strand breaks by TUNEL assay, and phosphatidylserine (PS) externalization. This apoptotic cell death was accompanied by caspase-9 and caspase-3 activation, as indicated by the cleavage of caspase substrates, which was preceded by mitochondrial cytochrome c release. The broad-spectrum caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk), prevented abrin-triggered caspase activation and partially abolished apoptotic cell death, but did not affect mitochondrial cytochrome c release. These results suggest that the release of mitochondrial cytochrome c, and the sequential caspase-9 and caspase-3 activations are important events in the signal transduction pathway of abrin-induced apoptotic cell death in the HeLa cell line.

Induction of Apoptosis in FRTL-5 Thyroid Cells by Okadaic Acid (Okadaic Acid에 의한 FRTL-5 갑상선 세포주의 Apoptosis 유도)

  • Cho Ji-Hyoung;Chung Ki-Yong;Park Jong-Wook
    • Korean Journal of Head & Neck Oncology
    • /
    • v.18 no.2
    • /
    • pp.142-149
    • /
    • 2002
  • Objectve : Okadaic acid is a specific inhibitor of serine/threonine protein phosphatase 1 and 2A. In order to know the mechanism of apoptosis induced by okadaic acid, we treated FRTL-5 thyroid cells with okadaic acid and measured the changes of important proteins that are involved in apoptosis. Materials and Methods: We measured caspase 3 activity, $PLC-{\gamma}1$ degradation, the expression of XIAP, cIAP1, cIAP2, and cytochrome c release in okadaic acid-treated FRTL-5 thyroid cells. Results: Okadaic acid-induced caspase 3 activation and $PLC-{\gamma}1$ degradation and apoptosis were dose-dependent with a maximal effect at a concentration of 80 nmol and time-dependent with a maximal effect at 24 hours after treatment. The elevated caspase 3 activity in okadaic acid treated FRTL-5 thyroid cells are correlated with down-regulation of XIAP and cIAP1, but not cIAP2. General and potent inhibitor of caspases, z-VAD-fmk. abolished okadaic acid-induced caspase 3 activity and $PLC-{\gamma}1$ degradation. The release of cytochrome c in okadaic acid-induced FRTL-5 thyroid cells was dose-dependent with a maximal effect at a concentration of 80 nmol. Conclusions: These findings suggest that mechanism of okadaic acid-induced apoptosis is associated with cytochrome c release and increase of caspase 3 activation in FRTL-5 thyroid cells.

20(S)-ginsenoside Rh2 induces caspase-dependent promyelocytic leukemia-retinoic acid receptor A degradation in NB4 cells via Akt/Bax/caspase9 and TNF-α/caspase8 signaling cascades

  • Zhu, Sirui;Liu, Xiaoli;Xue, Mei;Li, Yu;Cai, Danhong;Wang, Shijun;Zhang, Liang
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.295-304
    • /
    • 2021
  • Background: Acute promyelocytic leukemia (APL) is a hematopoietic malignancy driven by promyelocytic leukemia-retinoic acid receptor A (PML-RARA) fusion gene. The therapeutic drugs currently used to treat APL have adverse effects. 20(S)-ginsenoside Rh2 (GRh2) is an anticancer medicine with high effectiveness and low toxicity. However, the underlying anticancer mechanisms of GRh2-induced PML-RARA degradation and apoptosis in human APL cell line (NB4 cells) remain unclear. Methods: Apoptosis-related indicators and PML-RARA expression were determined to investigate the effect of GRh2 on NB4 cells. Z-VAD-FMK, LY294002, and C 87, as inhibitors of caspase, and the phosphatidylinositol 3-kinase (PI3K) and tumor necrosis factor-α (TNF-α) pathways were used to clarify the relationship between GRh2-induced apoptosis and PML-RARA degradation. Results: GRh2 dose- and time-dependently decreased NB4 cell viability. GRh2-induced apoptosis, cell cycle arrest, and caspase3, caspase8, and caspase9 activation in NB4 cells after a 12-hour treatment. GRh2-induced apoptosis in NB4 cells was accompanied by massive production of reactive oxygen species, mitochondrial damage and upregulated Bax/Bcl-2 expression. GRh2 also induced PML/PML-RARA degradation, PML nuclear bodies formation, and activation of the downstream p53 pathway in NB4 cells. Z-VAD-FMK inhibited caspase activation and significantly reversed GRh2-induced apoptosis and PML-RARA degradation. GRh2 also upregulated TNF-α expression and inhibited Akt phosphorylation. LY294002, an inhibitor of the PI3K pathway, enhanced the antitumor effects of GRh2, and C 87, an inhibitor of the TNF-α pathway, reversed NB4 cell viability, and GRh2-mediated apoptosis in a caspase-8-dependent manner. Conclusion: GRh2 induced caspase-dependent PML-RARA degradation and apoptosis in NB4 cells via the Akt/Bax/caspase9 and TNF-α/caspase8 pathways.

Apoptosis of Human Lung Carcinoma Cells through the Inhibition of Bcl-2 Expression and Activation of Caspase by Chungjogupae-tang (인체폐암세포에서 Bcl-2 발현저하 및 caspase 활성을 통한 청조구폐탕의 apoptosis 유발에 관한 연구)

  • Cho, In-Joo;Gam, Chul-Woo;Kim, Ki-Tak;Park, Dong-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.93-97
    • /
    • 2007
  • We previously reported the anti-proliferative effect of Chungjogupae-tang (CJGPT) in human lung carcinoma A549 cells, which was associated with the induction of cyclin-dependent kinase inhibitor p21 in a tumor suppressor p53-independent manner. CJGPT treatment also resulted in the inhibition of prostaglandin E2 release A549 cells by the down-regulation of cyclooxygenase-2. In the present study, we investigated the pathway of the induction of apoptotic cell death by CJGPT in A549 cells. It was found that CJGPT could inhibit the cell viability and induce the apoptotic cell death of A549 cells in a dose-dependent manner as measured by hemocytometer counts, flow cytometry analysis and agarose gel electrophoresis. Apoptosis of A549 cells by CJGPT was associated with a down-regulation of anti-apoptotic Bcl-2 and inhibitor of apoptosis proteins (IAPs) expression. Additionally, DNA fragmentation by CJGPT was connected with the activation of inhibitor of caspase-activated DNase/DNA fragmentation factor 45 (ICAD/DFF45) protein expression.

Induction of Apoptosis and Inhibition of NO Production by Piceatannol in Human Lung Cancer A549 Cells (A549 인체 폐암세포에서 piceatannol에 의한 apoptosis 유발과 NO 생성의 억제)

  • Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.22 no.6
    • /
    • pp.815-822
    • /
    • 2012
  • Piceatannol (trans-3,4,3',5'-tetrahydroxystilbene), a natural stilbene, is an analogue of resveratrol. Although recent experimental data have revealed the health benefit potency of piceatannol, the molecular mechanisms underlying the anti-cancer activity have not yet been studied in detail. In the present study, the further possible mechanisms by which piceatannol exerts its pro-apoptotic action in cultured human lung cancer A549 cells were investigated. Exposure of A549 cells to piceatannol resulted in growth inhibition and induction of apoptosis. Apoptosis induction of A549 cells by piceatannol showed correlation with proteolytic activation of caspase-3, -8, and -9, and concomitant degradation of activated caspase-3 target proteins such as poly (ADP-ribose) polymerase, phospholipase C-${\gamma}1$, ${\beta}$-catenin, and Inhibitor caspase-activated DNase. The increase in apoptosis by piceatannol treatment was also associated with an increase of pro-apoptotic Bax expression and decrease of anti-apoptotic Bcl-2 and Bcl-xL expression, and caused down-regulation of the inhibitor of apoptosis protein family members and up-regulation of Fas and Fas legend. In addition, piceatannol treatment markedly inhibited the expression of mRNA and proteins of inducible nitric oxide (NO) synthase, and the levels of NO production were progressively down-regulated by piceatannol treatment in a dose-dependent fashion. The results indicate that piceatannol may have therapeutic potential against human gastric cancer cells.

Oxymatrine Causes Hepatotoxicity by Promoting the Phosphorylation of JNK and Induction of Endoplasmic Reticulum Stress Mediated by ROS in LO2 Cells

  • Gu, Li-li;Shen, Zhe-lun;Li, Yang-Lei;Bao, Yi-Qi;Lu, Hong
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.401-412
    • /
    • 2018
  • Oxymatrine (OMT) often used in treatment for chronic hepatitis B virus infection in clinic. However, OMT-induced liver injury has been reported. In this study, we aim to investigate the possible mechanism of OMT-induced hepatotoxicity in human normal liver cells (L02). Exposed cells to OMT, the cell viability was decreased and apoptosis rate increased, the intracellular markers of oxidative stress were changed. Simultaneously, OMT altered apoptotic related proteins levels, including Bcl-2, Bax and pro-caspase-8/-9/-3. In addition, OMT enhanced the protein levels of endoplasmic reticulum (ER) stress makers (GRP78/Bip, CHOP, and cleaved-Caspase-4) and phosphorylation of c-Jun N-terminal kinase (p-JNK), as well as the mRNA levels of GRP78/Bip, CHOP, caspase-4, and ER stress sensors (IREI, ATF6, and PERK). Pre-treatment with Z-VAD-fmk, JNK inhibitor SP600125 and N-acetyl-l-cysteine (NAC), a ROS scavenger, partly improved the survival rates and restored OMT-induced cellular damage, and reduced caspase-3 cleavage. SP600125 or NAC reduced OMT-induced p-JNK and NAC significantly lowered caspase-4. Furthermore, 4-PBA, the ER stress inhibitor, weakened inhibitory effect of OMT on cells, on the contrary, TM worsen. 4-PBA also reduced the levels of p-JNK and cleaved-caspase-3 proteins. Therefore, OMT-induced injury in L02 cells was related to ROS mediated p-JNK and ER stress induction. Antioxidant, by inhibition of p-JNK or ER stress, may be a feasible method to alleviate OMT-induced liver injury.