DOI QR코드

DOI QR Code

Abrin Induces HeLa Cell Apoptosis by Cytochrome c Release and Caspase Activation

  • Qu, Xiaoling (Institute of Virology, College of Life Sciences, Wuhan University) ;
  • Qing, Liuting (College of Animal Sciences, Huazhong Agricultural University)
  • Published : 2004.07.31

Abstract

We identified apoptosis as being a significant mechanism of toxicity following the exposure of HeLa cell cultures to abrin holotoxin, which is in addition to its inhibition of protein biosynthesis by N-glycosidase activity. The treatment of HeLa cell cultures with abrin resulted in apoptotic cell death, as characterized by morphological and biochemical changes, i.e., cell shrinkage, internucleosomal DNA fragmentation, the occurrence of hypodiploid DNA, chromatin condensation, nuclear breakdown, DNA single strand breaks by TUNEL assay, and phosphatidylserine (PS) externalization. This apoptotic cell death was accompanied by caspase-9 and caspase-3 activation, as indicated by the cleavage of caspase substrates, which was preceded by mitochondrial cytochrome c release. The broad-spectrum caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk), prevented abrin-triggered caspase activation and partially abolished apoptotic cell death, but did not affect mitochondrial cytochrome c release. These results suggest that the release of mitochondrial cytochrome c, and the sequential caspase-9 and caspase-3 activations are important events in the signal transduction pathway of abrin-induced apoptotic cell death in the HeLa cell line.

Keywords

References

  1. Baluna, R., Rizo, J., Gordon, B. E., Ghtie, V. and Vitetta, E. S. (1999) Evidence for a structural motif in toxins and interleukin-2 that may be responsible for binding to endothelial cells and initiating vascular leak synetrome. Proc. Natl. Acad. Sci. USA 96, 3957-3962. https://doi.org/10.1073/pnas.96.7.3957
  2. Bossy, W. E., Newmeyer, D. D. and Green, D. R. (1998) Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J. 17, 37-49. https://doi.org/10.1093/emboj/17.1.37
  3. Cryns, V. and Yuan, J. (1998) Proteases to die for. Genes Dev. 12, 1551-1570. https://doi.org/10.1101/gad.12.11.1551
  4. Endo, Y., Mitsui, K. and Motizuki, K. (1987) The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. J. Biol. Chem. 262, 5908-5912.
  5. Green, D. R. (1998) Apoptotic pathways: the roads to ruin. Cell. 94, 695-698. https://doi.org/10.1016/S0092-8674(00)81728-6
  6. Green, D. R. and Reed, J. C. (1998) Mitochondria and apoptosis. Science. 281, 1309-1312. https://doi.org/10.1126/science.281.5381.1309
  7. Hengartner, M. O. (2000) The biochemistry of apoptosis. Nature. 407, 770-776. https://doi.org/10.1038/35037710
  8. Hughes, J. N., Lindsay, C. D. and Griffiths, G. D. (1996) Morphology of ricin and abrin exposed endothelial cells is consistent with apoptotic cell death. Hum. Exp. Toxicol. 15, 443-451. https://doi.org/10.1177/096032719601500513
  9. Jacobson, M. D., Weil, M. and Raff, M. C. (1997) Programmed cell death in animal development. Cell. 88, 347-354. https://doi.org/10.1016/S0092-8674(00)81873-5
  10. Komatsu, N., Oda, T. and Muramatsu, T. (1998) Involvement of both caspase-like proteases and serine proteases in apoptotic cell death induced by ricin, modeccin, diphtheria toxin and pseudomonas toxin. J. Biochem. 124, 1038-1044. https://doi.org/10.1093/oxfordjournals.jbchem.a022197
  11. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S. and Wang, X. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489. https://doi.org/10.1016/S0092-8674(00)80434-1
  12. Liu, C. L., Tsai, C. C., Lin, S. C., Wang, L. I., Hsu, C. I., Hwang, M. J. and Lin, J. Y. (2000) Primary structure and function analysis of the Abrus precatorius agglutinin A chain by site-directed mutagenesis. Pro (199) of amphiphilic alpha-helix H impairs protein synthesis inhibitory activity. J. Biol. Chem. 275, 1897-1901. https://doi.org/10.1074/jbc.275.3.1897
  13. Muzio, M., Salvesen, G. S. and Dixit, V. M. (1997) FLICE induced apoptosis in a cell-free system. J. Biol. Chem. 272, 2952-2956. https://doi.org/10.1074/jbc.272.5.2952
  14. Oda, T., Komatsu, N. and Muramatsu, T. (1998) Diisopropylfluorophosphate (DFP) inhibits ricin-induced apoptosis of MDCK cells. Biosci. Biotechnol. Biochem. 62, 325-333. https://doi.org/10.1271/bbb.62.325
  15. Reed, J. C. (1997) Cytochrome c: can't live with it- can't live without it. Cell 91, 559-562. https://doi.org/10.1016/S0092-8674(00)80442-0
  16. Shih, S. F., Wu, Y. H., Hung, C. H., Yang, H. Y. and Lin, J. Y. (2001) Abrin triggers cell death by inactivating a thiol-specific antioxidant protein. J. Biol. Chem. 276, 21870-21877. https://doi.org/10.1074/jbc.M100571200
  17. Wu, A. M., Wu, J. M., Her, P. A., Chow, L. P. and Lin, J. Y. (2001) Carbohydrate specificity of a toxic lectin, abrin A, from the seeds of Abrus precatorius (jequirity bean). Life Sci. 69, 2027-2038. https://doi.org/10.1016/S0024-3205(01)01298-X
  18. Wu, T. H., Chow, L. P. and Lin, J. Y. (1998) Sechiumin, a ribosome-inactivating protein from the edible gourd, Sechium edule Swartz purification, characterization, molecular cloning and expression. Eur. J. Biochem. 255, 400-408. https://doi.org/10.1046/j.1432-1327.1998.2550400.x

Cited by

  1. Cr(VI) induces mitochondrial-mediated and caspase-dependent apoptosis through reactive oxygen species-mediated p53 activation in JB6 Cl41 cells vol.245, pp.2, 2010, https://doi.org/10.1016/j.taap.2010.03.004
  2. Impact of metal on the DNA photocleavage activity and cytotoxicity of ferrocenyl terpyridine 3d metal complexes vol.40, pp.44, 2011, https://doi.org/10.1039/c1dt11102g
  3. Ferrocene-Conjugated Copper(II) Complexes ofl-Methionine and Phenanthroline Bases: Synthesis, Structure, and Photocytotoxic Activity vol.31, pp.8, 2012, https://doi.org/10.1021/om201102k
  4. Induction of Apoptotic Effects of Antiproliferative Protein from the Seeds ofBorreria hispidaon Lung Cancer (A549) and Cervical Cancer (HeLa) Cell Lines vol.2014, 2014, https://doi.org/10.1155/2014/179836
  5. Epstein-Barr Virus-infected Akata Cells Are Sensitive to Histone Deacetylase Inhibitor TSA-provoked Apoptosis vol.38, pp.6, 2005, https://doi.org/10.5483/BMBRep.2005.38.6.755
  6. Involvement of Prohibitin Upregulation in Abrin-Triggered Apoptosis vol.2012, 2012, https://doi.org/10.1155/2012/605154
  7. Gliotoxin Isolated from Marine Fungus Aspergillus sp. Induces Apoptosis of Human Cervical Cancer and Chondrosarcoma Cells vol.12, pp.1, 2014, https://doi.org/10.3390/md12010069
  8. Cellular uptake and remarkable photocytotoxicity of pyrenylter pyridine oxovanadium(IV) complexes of dipyridophenazine bases vol.393, 2012, https://doi.org/10.1016/j.ica.2012.06.015
  9. Autophagy promotes paclitaxel resistance of cervical cancer cells: involvement of Warburg effect activated hypoxia-induced factor 1-α-mediated signaling vol.5, pp.8, 2014, https://doi.org/10.1038/cddis.2014.297
  10. Stimulus-Responsive Controlled Release System by Covalent Immobilization of an Enzyme into Mesoporous Silica Nanoparticles vol.23, pp.4, 2012, https://doi.org/10.1021/bc200301a
  11. Photo-induced anticancer activity of polypyridyl platinum(II) complexes vol.57, 2012, https://doi.org/10.1016/j.ejmech.2012.09.025
  12. Enhancing the photocytotoxic potential of curcumin on terpyridyl lanthanide(iii) complex formation vol.42, pp.1, 2013, https://doi.org/10.1039/C2DT32042H
  13. Abrin P2 suppresses proliferation and induces apoptosis of colon cancer cells via mitochondrial membrane depolarization and caspase activation vol.48, pp.5, 2016, https://doi.org/10.1093/abbs/gmw023
  14. Photo-induced DNA cleavage activity and remarkable photocytotoxicity of lanthanide(iii) complexes of a polypyridyl ligand vol.41, pp.3, 2012, https://doi.org/10.1039/C1DT11400J