DOI QR코드

DOI QR Code

Effect of Proapoptotic Bcl-2 on Naringenin-induced Apoptosis in Human Leukemia U937 Cells

Naringenin에 의한 인체혈구암세포의 apoptosis 유발에 미치는 pro-apoptotic Bcl-2의 영향

  • Park, Cheol (Department of Molecular Biology, College of Natural Sciences, Dongeui University) ;
  • Jin, Cheng-Yun (School of Pharmaceutical Science, Zhengzhou University) ;
  • Choi, Tae Hyun (Department of Ophthalmic Optics, Daegu Technical University) ;
  • Hong, Su Hyun (Department of Biochemistry, Dongeui University College of Oriental Medicine) ;
  • Choi, Yung Hyun (Department of Biochemistry, Dongeui University College of Oriental Medicine)
  • 박철 (동의대학교 자연과학대학 분자생물학과) ;
  • ;
  • 최태현 (대구공업대학 안경광학과) ;
  • 홍수현 (동의대학교 한의과대학 생화학교실) ;
  • 최영현 (동의대학교 한의과대학 생화학교실)
  • Received : 2013.08.15
  • Accepted : 2013.09.17
  • Published : 2013.09.30

Abstract

Naringenin, a naturally occurring citrus flavonone, is a potentially valuable candidate for cancer chemotherapy. However, the cellular and molecular mechanisms responsible for its anticancer activity are largely unknown. In the present study, we attempted to elucidate the mechanisms responsible for naringenin-induced apoptosis in human leukemic U937 cells. We found that naringenin markedly inhibited the growth of U937 cells by decreasing cell proliferation and inducing apoptosis, which was associated with the activation of caspases. A pan-caspase inhibitor, z-VAD-fmk, significantly inhibited naringenin-induced U937 cell apoptosis, indicating that caspases are key regulators of apoptosis in response to naringenin in U937 cells. Although the levels of antiapoptotic Bcl-2 and proapoptotic Bax proteins remained unchanged in naringenin-treated U937 cells, Bcl-2 overexpression attenuated naringenin-induced apoptosis. Furthermore, combined treatment with naringenin and HA14-1, a small-molecule Bcl-2 inhibitor, effectively increased the apoptosis through enhancement of XIAP down-regulation, Bid cleavage, and caspase activation, suggesting that the synergistic effect was at least partially mediated through the death receptor-mediated apoptosis pathway.

감귤류에 많이 함유되어 있는 naringenin은 항암화학요법제로서 중요한 가능성을 가지고 있으나 항암활성에 대한 분자생물학적 기전에 대해서는 명확히 밝혀져 있지 않다. 본 연구에서는 인체 혈구암세포인 U937 세포에서 naringenin이 유발하는 항암효과 및 항암기전을 조사하였다. Naringenin 처리에 의한 U937 세포의 증식억제는 apoptosis 유발과 연관성이 있었으며, 이러한 현상은 caspases 활성화와 밀접한 관련이 있었다. 그러나 pan-caspase inhibitor인 z-VAD-fmk의 선처리에 의하여 U937 세포에서 naringenin이 유발하는 apoptosis가 억제되는 것으로 나타났으므로 caspases가 apoptosis 유발의 중요한 조절자라는 것을 알 수 있었다. 또한 U937 세포에 naringenin을 처리하였을 경우 pro-apoptotic Bcl-2 및 anti-apoptotic Bax의 발현에는 아무런 변화가 나타나지는 않았지만 Bcl-2가 과발현된 U937/Bcl-2 세포에서 naringenin에 의한 apoptosis가 억제되었다. 하지만 small-molecule Bcl-2 inhibitor인 HA14-1 및 naringenin을 같이 처리하였을 경우에는 XIAP 발현감소, Bid 단편화 및 caspase-3 활성화를 통하여 다시 apoptosis가 유발되었다. 따라서 HA14-1 및 naringenin에 의한 apoptosis 상승효과는 death receptor-mediated apoptosis pathway를 경유한다는 것을 제시하는 결과이다.

Keywords

References

  1. Ashkenazi, A. 2002. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2, 420-430. https://doi.org/10.1038/nrc821
  2. Chai, F., Truong-Tran, A. Q., Ho, L. H. and Zalewski, P. D. 1999. Regulation of caspase activation and apoptosis by cellular zinc fluxes and zinc deprivation: A review. Immunol Cell Biol 77, 272-278. https://doi.org/10.1046/j.1440-1711.1999.00825.x
  3. Chen, D., Chen, M. S., Cui, Q. C., Yang, H. and Dou, Q. P. Structure-proteasome-inhibitory activity relationships of dietary flavonoids in human cancer cells. Front Biosci 12, 1935-1945.
  4. Chen, Y. C., Shen, S. C. and Lin, H. Y. 2003. Rutinoside at C7 attenuates the apoptosis-inducing activity of flavonoids. Biochem Pharmacol 66, 1139-1150. https://doi.org/10.1016/S0006-2952(03)00455-6
  5. Cory, S., Huang, D. C. and Adams, J. M. 2003. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22, 8590-8607. https://doi.org/10.1038/sj.onc.1207102
  6. Dixon, R. A. and Steele, C. L. 1999. Flavonoids and isoflavonoids - a gold mine for metabolic engineering. Trends Plant Sci 4, 394-400. https://doi.org/10.1016/S1360-1385(99)01471-5
  7. Fiandalo, M. V. and Kyprianou, N. 2012. Caspase control: protagonists of cancer cell apoptosis. Exp Oncol 34, 165-175.
  8. Galati, G., Moridani, M. Y., Chan, T. S. and O'Brien, P. J. 2001. Peroxidative metabolism of apigenin and naringenin versus luteolin and quercetin: glutathione oxidation and conjugation. Free Radic Biol Med 30, 370-382. https://doi.org/10.1016/S0891-5849(00)00481-0
  9. Galluzzo, P., Ascenzi, P., Bulzomi, P. and Marino, M. 2008. The nutritional flavanone naringenin triggers antiestrogenic effects by regulating estrogen receptor alpha-palmitoylation. Endocrinology 149, 2567-2575. https://doi.org/10.1210/en.2007-1173
  10. Ghavami, S., Hashemi, M., Ande, S. R., Yeganeh, B., Xiao, W., Eshraghi, M., Bus, C. J., Kadkhoda, K., Wiechec, E., Halayko, A. J. and Los, M. 2009. Apoptosis and cancer: mutations within caspase genes. J Med Genet 46, 497-510. https://doi.org/10.1136/jmg.2009.066944
  11. Guengerich, F. P. and Kim, D. H. 1990. In vitro inhibition of dihydropyridine oxidation and aflatoxin B1 activation in human liver microsomes by naringenin and other flavonoids. Carcinogenesis 11, 2275-2279. https://doi.org/10.1093/carcin/11.12.2275
  12. Hermenean, A., Ardelean, A., Stan, M., Herman, H., Mihali, C. V., Costache, M. and Dinischiotu, A. 2013. Protective effects of naringenin on carbon tetrachloride-induced acute nephrotoxicity in mouse kidney. Chem Biol Interact 205, 138-147. https://doi.org/10.1016/j.cbi.2013.06.016
  13. Jin, C. Y., Park, C., Hwang, H. J., Kim, G. Y., Choi, B. T., Kim, W. J. and Choi, Y. H. 2011. Naringenin up-regulates the expression of death receptor 5 and enhances TRAIL-induced apoptosis in human lung cancer A549 cells. Mol Nutr Food Res 55, 300-309. https://doi.org/10.1002/mnfr.201000024
  14. Kawaii, S., Tomono, Y., Katase, E., Ogawa, K. and Yano, M. 1999. HL-60 differentiating activity and flavonoid content of the readily extractable fraction prepared from citrus juices. J Agric Food Chem 47, 128-135. https://doi.org/10.1021/jf9805101
  15. Kerr, J. F., Wyllie, A. H. and Currie, A. R. 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26, 239-257. https://doi.org/10.1038/bjc.1972.33
  16. Kuwana, T. and Newmeyer, D. D. 2003. Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol 15, 691-699. https://doi.org/10.1016/j.ceb.2003.10.004
  17. Lentini, A., Forni, C., Provenzano, B. and Beninati, S. 2007. Enhancement of transglutaminase activity and polyamine depletion in B16-F10 melanoma cells by flavonoids naringenin and hesperitin correlate to reduction of the in vivo metastatic potential. Amino Acids 32, 95-100. https://doi.org/10.1007/s00726-006-0304-3
  18. Liu, X., Zou, H., Slaughter, C. and Wang, X. 1997. DFF, a heterodimeric protein that functions downstream of caspase- 3 to trigger DNA fragmentation during apoptosis. Cell 89, 175-184. https://doi.org/10.1016/S0092-8674(00)80197-X
  19. Manero, F., Gautier, F., Gallenne, T., Cauquil, N., Gree, D., Cartron, P. F., Geneste, O., Gree, R., Vallette, F. M. and Juin, P. 2006. The small organic compound HA14-1 prevents Bcl-2 interaction with Bax to sensitize malignant glioma cells to induction of cell death. Cancer Res 66, 2757-2764. https://doi.org/10.1158/0008-5472.CAN-05-2097
  20. Martinou, J. C. and Youle, R. J. 2011. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21, 92-101. https://doi.org/10.1016/j.devcel.2011.06.017
  21. Muller, S., Briand, J. P., Barakat, S., Lagueux, J., Poirier, G. G., De Murcia, G. and Isenberg, D. A. 1994. Autoantibodies reacting with poly(ADP-ribose) and with a zinc-finger functional domain of poly(ADP-ribose) polymerase involved in the recognition of damaged DNA. Clin Immunol Immunopathol 73, 187-196. https://doi.org/10.1006/clin.1994.1187
  22. Nahmias, Y., Goldwasser, J., Casali, M., van Poll, D., Wakita, T., Chung, R. T. and Yarmush, M. L. 2008. Apolipoprotein B-dependent hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin. Hepatology 47, 1437-1445. https://doi.org/10.1002/hep.22197
  23. Oliver, F. J., de la Rubia, G., Rolli, V., Ruiz-Ruiz, M. C., de Murcia, G. and Murcia, J. M. 1998. Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. J Biol Chem 273, 33533-33539.
  24. Park, H. Y., Kim, G. Y. and Choi, Y. H. 2012. Naringenin attenuates the release of pro-inflammatory mediators from lipopolysaccharide-stimulated BV2 microglia by inactivating nuclear factor-${\kappa}B$ and inhibiting mitogen-activated protein kinases. Int J Mol Med 30, 204-210.
  25. Park, J. H., Jin, C. Y., Lee, B. K., Kim, G. Y., Choi, Y. H. and Jeong, Y. K. 2008. Naringenin induces apoptosis through downregulation of Akt and caspase-3 activation in human leukemia THP-1 cells. Food Chem Toxicol 46, 3684-3690. https://doi.org/10.1016/j.fct.2008.09.056
  26. Pei, X. Y., Dai, Y. and Grant, S. 2004. The small-molecule Bcl-2 inhibitor HA14-1 interacts synergistically with flavopiridol to induce mitochondrial injury and apoptosis in human myeloma cells through a free radical-dependent and Jun NH2-terminal kinase-dependent mechanism. Mol Cancer Ther 3, 1513-1524.
  27. Scatena, R. 2012. Mitochondria and cancer: a growing role in apoptosis, cancer cell metabolism and dedifferentiation. Adv Exp Med Biol 942, 287-308. https://doi.org/10.1007/978-94-007-2869-1_13
  28. Waterhouse, N. J., Sedelies, K. A. and Trapani, J. A. 2006. Role of Bid-induced mitochondrial outer membrane permeabilization in granzyme B-induced apoptosis. Immunol Cell Biol 84, 72-78. https://doi.org/10.1111/j.1440-1711.2005.01416.x
  29. Zamzami, N., Susin, S. A., Marchetti, P., Hirsch, T., Gómez-Monterrey, I., Castedo, M. and Kroemer, G. 1996. Mitochondrial control of nuclear apoptosis. J Exp Med 183, 1533-1544. https://doi.org/10.1084/jem.183.4.1533
  30. Zimmermann, K. C., Bonzon, C. and Green, D. R. 2001. The machinery of programmed cell death. Pharmacol Ther 92, 57-70. https://doi.org/10.1016/S0163-7258(01)00159-0

Cited by

  1. Apoptotic effects of extract from Cnidium monnieri (L.) Cusson by adenosine monosphosphate-activated protein kinase-independent pathway in HCT116 colon cancer cells vol.13, pp.6, 2016, https://doi.org/10.3892/mmr.2016.5115
  2. Apoptotic Effects and Cell Cycle Arrest Effects of Extracts from Cnidium monnieri (L.) Cusson through Regulating Akt/mTOR/GSK-3β Signaling Pathways in HCT116 Colon Cancer Cells vol.26, pp.6, 2016, https://doi.org/10.5352/JLS.2016.26.6.663