• Title/Summary/Keyword: caspase inhibitor

Search Result 369, Processing Time 0.023 seconds

Effect of Hypoxia on the Signal Transduction of Apoptosis in Osteoblasts (저산소 상태에서 조골세포 고사의 신호전달 기전)

  • Park, Young-Joo;Oh, Soh-Taek;Kang, Kyung-Hwa;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.33 no.6 s.101
    • /
    • pp.453-463
    • /
    • 2003
  • Mammalian cell is critically dependent on a continuous supply of oxygen. Even brief periods of oxygen deprivation can result in profound cellular damage. The aim of this study was to examine the possible mechanism of apoptosis in response to hypoxia in MC3T3E1 osteoblasts. MC3T3El osteoblasts under hypoxic conditions ($2\%$ oxygen) resulted in apoptosis in a time-dependent manner, determined by DNA fragmentation assay and nuclear morphology, stained with fluorescent dye (Hoechst 33258) Pretreatment with Z-VAD-FMK, a pancaspase inhibitor, or Z-DEVD-CHO, a specific caspase-3 inhibitor, suppressed the DNA ladder in response to hypoxia in a concentration dependent manner. An increase in caspase-3-like protease (DEVDase) activity was observed during apoptosis, but no caspase-l activity (YVADase) was detected. To confirm what caspases were involved in apoptosis, western blot analysis was performed using an anticaspase-3 or 6 antibody. The 17-kDa protein, that corresponds to the active products of caspase-3 and the 20-kDa protein of the active protein of caspase-6 were generated in hypoxia-challenged lysates, in which the full length forms of caspase-3 and 6 were evident. With a time course similar to caspase-3 and 6 activation, hypoxic stress also caused the cleavage of Lamin A, typical of caspase-6 activity. In addition, the hypoxic stress elicited the release of cytochrome c into the cytosol during apoptosis. These findings suggested that the activation of caspases accompanied by a cytochrome c release in response to hypoxia was involved in apoptotic cell death in MC3T3E1 osteoblasts.

Effect of Samryungbaikchul-san on Astrocyte Activation and Apoptosis in Mouse Model of Alzheimer Disease (삼령백출산(蔘笭白朮散)이 Alzheimer's Disease 동물모델의 Astrocyte 활성화 및 Apoptosis에 미치는 영향)

  • Lee, Sang-Ryong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.374-380
    • /
    • 2009
  • Samryungbaikchul-san(SRBCS) has been used in oriental medicine for the treatments of gastrointestinal and neurological disorders. Here, potential protective function of SRBCS was investigated in neural tissues in Alzheimer's disease(AD) mouse model. In primary cultured cells from the spinal cord of newborn rats, treatment of ${\beta}$-amyloid peptide elevated cell counts positive to glial fibrillary acidic protein(GFAP) or caspase 3 immunoreactivity, but the co-treatment of SRBCS reduced positive cell counts. In vivo administration of scopolamine, an inhibitor of muscarinic receptor, resulted in increases in the number of glial fibrillary acidic protein(GFAP) and caspase 3-positive cells in hippocampal subfields, which was then decreased by the treatment of SRBCS or acetylcholinesterase inhibitor galathamine. The present data suggest that SRBCS may play a protective role in damaged neural tissues caused by scopolamine treatments in mice.

Melatonin Induces Apoptotic Cell Death via p53 in LNCaP Cells

  • Kim, Chi-Hyun;Yoo, Yeong-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.365-369
    • /
    • 2010
  • In this study, we examined whether melatonin promotes apoptotic cell death via p53 in prostate LNCaP cells. Melatonin treatment significantly curtailed the growth of LNCaP cells in a dose- and time-dependent manner. Melatonin treatment (0 to 3 mM) induced the fragmentation of poly(ADP-ribose) polymerase (PARP) and activation of caspase-3, caspase-8, and caspase-9. Moreover, melatonin markedly activated Bax expression and decreased Bcl-2 expression in dose increments. To investigate p53 and p21 expression, LNCaP cells were treated with 0 to 3 mM melatonin. Melatonin increased the expressions of p53, p21, and p27. Treatment with mitogen-activated protein kinase (MAPK) inhibitors, PD98059 (ERK inhibitor), SP600125 (JNK inhibitor) and SB202190 (p38 inhibitor), confirmed that the melatonin-induced apoptosis was p21-dependent, but ERK-independent. With the co-treatment of PD98059 and melatonin, the expression of p-p53, p21, and MDM2 did not decrease. These effects were opposite to the expression of p-p53, p21, and MDM2 observed with SP600125 and SB202190 treatments. Together, these results suggest that p53-dependent induction of JNK/p38 MAPK directly participates in apoptosis induced by melatonin.

Apoptosis Induction by Methanol Extract of Prunus mume Fruits in Human Leukemia U937 Cells (인체 백혈병세포에서 매실 추출물에 의한 apoptosis 유도)

  • Chung, You-Jeong;Park, Cheol;Jeong, Yong-Kee;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1109-1119
    • /
    • 2011
  • In the present study, the pro-apoptotic effects of methanol extract of Prunus mume fruits (MEPM) in human leukemia U937 cells were investigated. It was found that exposure to MEPM resulted in growth inhibition in a concentration-dependent manner by inducing apoptosis. The induction of apoptotic cell death in U937 cells by MEPM was correlated with a down-regulation of inhibitor of apoptosis protein (IAP) family, such as X-linked inhibitor of apoptosis protein (XIAP) and survivin, anti-apoptotic Bcl-2, up-regulation of FasL and cleavage of Bid. MEPM treatment also induced the proteolytic activation of caspase-3, caspase-8 and caspase-9, and degradation of caspase-3 substrate proteins, such as poly (ADP-ribose) polymerase (PARP) and ${\beta}$-catenin. In addition, apoptotic cell death induced by MEPM was significantly inhibited by z-DEVD-fmk, a caspase-3 specific inhibitor, which demonstrates the important role of caspase-3 in the apoptotic process by MEPM in U937 cells. Taken together, these findings suggest that P. mume extracts may be a potential chemotherapeutic agent for the control of human leukemia cells and further studies will be needed to identify the active compounds.

Pan-Caspase Inhibitor zVAD Induces Necroptotic and Autophagic Cell Death in TLR3/4-Stimulated Macrophages

  • Chen, Yuan-Shen;Chuang, Wei-Chu;Kung, Hsiu-Ni;Cheng, Ching-Yuan;Huang, Duen-Yi;Sekar, Ponarulselvam;Lin, Wan-Wan
    • Molecules and Cells
    • /
    • v.45 no.4
    • /
    • pp.257-272
    • /
    • 2022
  • In addition to inducing apoptosis, caspase inhibition contributes to necroptosis and/or autophagy depending on the cell type and cellular context. In macrophages, necroptosis can be induced by co-treatment with Toll-like receptor (TLR) ligands (lipopolysaccharide [LPS] for TLR4 and polyinosinic-polycytidylic acid [poly I:C] for TLR3) and a cell-permeable pan-caspase inhibitor zVAD. Here, we elucidated the signaling pathways and molecular mechanisms of cell death. We showed that LPS/zVAD- and poly I:C/zVAD-induced cell death in bone marrow-derived macrophages (BMDMs) was inhibited by receptor-interacting protein kinase 1 (RIP1) inhibitor necrostatin-1 and autophagy inhibitor 3-methyladenine. Electron microscopic images displayed autophagosome/autolysosomes, and immunoblotting data revealed increased LC3II expression. Although zVAD did not affect LPS- or poly I:C-induced activation of IKK, JNK, and p38, it enhanced IRF3 and STAT1 activation as well as type I interferon (IFN) expression. In addition, zVAD inhibited ERK and Akt phosphorylation induced by LPS and poly I:C. Of note, zVAD-induced enhancement of the IRF3/IFN/STAT1 axis was abolished by necrostatin-1, while zVAD-induced inhibition of ERK and Akt was not. Our data further support the involvement of autocrine IFNs action in reactive oxygen species (ROS)-dependent necroptosis, LPS/zVAD-elicited ROS production was inhibited by necrostatin-1, neutralizing antibody of IFN receptor (IFNR) and JAK inhibitor AZD1480. Accordingly, both cell death and ROS production induced by TLR ligands plus zVAD were abrogated in STAT1 knockout macrophages. We conclude that enhanced TRIF-RIP1-dependent autocrine action of IFNβ, rather than inhibition of ERK or Akt, is involved in TLRs/zVAD-induced autophagic and necroptotic cell death via the JAK/STAT1/ROS pathway.

Neonatal Rat Necrotizing Enterocolitis Model Adopting Oral Endotoxin and Hypoxia Exhibits Increased Apoptosis through Caspase-3 Activation (경구 내독소와 저산소로 유발된 신생쥐의 괴사성 장염모델에서 caspase-3 활성화를 통한 세포자멸사의 증가)

  • Lee, Yun-Kyoung;Kim, Ee-Kyung;Kim, Ji-Eun;Kim, Yoon-Joo;Son, Se-Hyung;Kim, Han-Suk;Kim, Beyong-Il;Choi, Jung-Hwan
    • Neonatal Medicine
    • /
    • v.17 no.1
    • /
    • pp.44-52
    • /
    • 2010
  • Purpose : The aim of this study was to develop a model for necrotizing enterocolitis (NEC) in the neonatal rat using endotoxin and hypoxia, a plausible insult in a neonatal intensive care and to investigate the role of apoptosis as the underlying mechanism. Methods : Newborn rats were given oral endotoxin and intermittent 8% hypoxia$\pm$caspase inhibitor. The intestinal histology was evaluated using hematoxylin-eosin staining. Apoptosis was analyzed with TUNEL staining and by measuring the caspase 3 activity in the intestinal lysates. IEC-6 cells were assessed for apoptosis and the expression of Bax, Bcl-2, Fas and FasL was measured after treatment with endotoxin and hypoxia. Results : Oral endotoxin (5 mg/kg) and exposure to 8% hypoxia of 60-min duration twice induced human NEC-like lesions in the rat intestine. Intestinal tissue revealed increased apoptosis and caspase-3 activity. After caspase inhibitor treatment, the grades of both apoptosis and NEC were significantly reduced. IEC-6 cells exhibited increased apoptosis and caspase 3 activity after endotoxin and hypoxia treatment and significantly increased Bax/Bcl- 2 ratio compared to control cells. Conclusion : This neonatal rat model of NEC which was induced by oral endotoxin and intermittent hypoxia showed increased apoptosis of intestinal epithelial cells that was mediated by caspase 3 activation. Our model has a advantage in the study of NEC because the use of much more clinically plausible insults may provide a suitable model for the investigation of its pathophysiology and therapeutic trials.

Cytotoxic Effect of Triglycerides via Apoptotic Caspase Pathway in Immune and Non-immune Cell Lines

  • Lim, Jaewon;Yang, Eun Ju;Chang, Jeong Hyun
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.66-74
    • /
    • 2019
  • Hyperlipidemia is defined as conditions of the accumulation of lipids such as free fatty acids (FFA), triglyceride (TG), cholesterol and/or phospholipid in the bloodstream. Hyperlipidemia can cause lipid accumulation in non-adipose tissue, which is lipid-cytotoxic effects in many tissues and mediates cell dysfunction, inflammation or programmed cell death (PCD). TG is considered to be a major cause of atherosclerosis through inflammatory necrosis of vascular endothelial cells. Recently, TG have also been shown to exhibit lipid-cytotoxicity and induce PCD. Therefore, we investigated the effect of TG on the cytotoxic effect of various cell types. When exposed to TG, the cell viability of U937 monocytes and Jurkat T lymphocytes, as well as the cell viability of MCF-7, a non-immune cell, decreased in time- and dose-dependent manner. In U937 cells and Jurkat cells, caspase-9, an intrinsic apoptotic caspase, and caspase-8, an extrinsic apoptotic caspase, were increased by exposure to TG. However, in TG-treated MCF-7 cells, caspase-8 activity increased only without caspase-9 activity. In addition, the reduction of cell viability by TG was recovered when all three cell lines were treated with pan-caspase inhibitor. These results suggest that activation of apoptotic caspases by TG causes lipotoxic effect and decreases cell viability.

Effect of Depletion and Oxidation of Cellular GSH on Cytotoxicity of Mitomycin Small Cell Lung Cancer Cells

  • Lee, Chung-Soo
    • Biomolecules & Therapeutics
    • /
    • v.12 no.2
    • /
    • pp.92-100
    • /
    • 2004
  • Effect of the depletion or oxidation of GSH on mitomycin c (MMC)-induced mitochondrial damage and cell death was assessed in small cell lung cancer (SCLC) cells. MMC induced cell death and the decrease in the GSH contents in SCLC cells, which were inhibited by z-LEHD.fmk (a cell permeable inhibitor of caspase-9), z-DQMD.fmk (a cell permeable inhibitor of caspase-3) and thiol compound, N-acetylcysteine. MMC caused nuclear damage, release of cytochrome c and activation of caspase-3, which were reduced by N-acetylcysteine. The depletion of GSH due to L-butionine-sulfoximine enhanced the MMC-induced cell death and formation of reactive oxygen species in SCLC cells, whereas the oxidation of GSH due to diamide or $NH_2Cl$ did not affect cytotoxicity of MMC. The results show that MMC may cause cell death in SCLC cells by inducing mitochondrial dysfunction, leading to activation of caspase-9 and -3. The MMC-induced change in the mitochondrial membrane permeability, followed by cell death, in SCLC cells may be significantly enhanced by the depletion of GSH. In contrast, the oxidation of GSH may not affect cytotoxicity of MMC.

Capsaicin-Induced Apoptosis and Reduced Release of Reactive Oxygen Species in MBT-2 Murine Bladder Tumor Cells

  • Lee, Ji-Seon;Chang, Jong-Sun;Lee, Ji-Youl;Kim, Jung-Ae
    • Archives of Pharmacal Research
    • /
    • v.27 no.11
    • /
    • pp.1147-1153
    • /
    • 2004
  • Bladder cancer is a common cancer with high risk of recurrence and mortality. Intravesicle chemotherapy after trans-urethral resection is required to prevent tumor recurrence and progression. It has been known that antioxidants enhance the antitumor effect of bacillus Calmette-Guerin (BCG), the most effective intravesical bladder cancer treatment. Capsaicin, the major pungent ingredient in genus Capsicum, has recently been tried as an intravesical drug for overactive bladder and it has also been shown to induce apoptotic cell death in many cancer cells. In this study, we investigated the apoptosis-inducing effect and alterations in the cellular redox state of capsaicin in MBT-2 murine bladder tumor cells. Capsaicin induced apoptotic MBT-2 cell death in a time- and dose-dependent manner. The capsaicin-induced apoptosis was blocked by the pretreatment with Z-VAD-fmk, a broad-range caspase inhibitor, or Ac-DEVD-CHO, a caspase-3 inhibitor. In addition to the caspase-3 activation, capsaicin also induced cytochrome c release and decrease in Bcl-2 protein expression with no changes in the level of Bax. Furthermore, capsaicin at the concentration of inducing apoptosis also markedly reduced the level of reactive oxygen species and lipid peroxidation, implying that capsaicin may enhance the antitumor effect of BCG in bladder cancer treatment. These results further suggest that capsaicin may be a valuable intravesical chemotherapeutic agent for bladder cancers.

Induction of Apoptosis by Aqueous Extract of Cordyceps militaris Through Activation of Caspases and Inactivation of Akt in Human Breast Cancer MDA-MB-231 Cells

  • Jin, Cheng-Yun;Kim, Gi-Young;Choi, Yung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1997-2003
    • /
    • 2008
  • Cordyceps militaris is well known as a traditional medicinal mushroom and has been shown to exhibit immunostimulatory and anticancer activities. In this study, we investigated the apoptosis induced by an aqueous extract of C. militaris (AECM) via the activation of caspases and altered mitochondrial membrane permeability in human breast cancer MDA-MB-231 cells. Exposure to AECM induced apoptosis, as demonstrated by a quantitative analysis of nuclear morphological change and a flow cytometric analysis. AECM increased hyperpolarization of mitochondrial membrane potential and promoted the activation of caspases. Both the cytotoxic effect and apoptotic characteristics induced by AECM treatment were significantly inhibited by z-DEVD-fmk, a caspase-3 inhibitor, which demonstrates the important role of caspase-3 in the observed cytotoxic effect. AECM-induced apoptosis was associated with the inhibition of Akt activation in a time-dependent manner, and pretreatment with LY294002, a PI3K/Akt inhibitor, significantly increased AECM-induced apoptosis. The results indicated that AECM-induced apoptosis may relate to the activation of caspase-3 and mitochondria dysfunctions that correlate with the inactivation of Akt.