Effect of Hypoxia on the Signal Transduction of Apoptosis in Osteoblasts

저산소 상태에서 조골세포 고사의 신호전달 기전

  • Park, Young-Joo (Department of Orthodontics, College of Dentistry, Wonkwang University) ;
  • Oh, Soh-Taek (Department of Orthodontics, College of Dentistry, Wonkwang University) ;
  • Kang, Kyung-Hwa (Department of Orthodontics, College of Dentistry, Wonkwang University) ;
  • Kim, Sang-Cheol (Department of Orthodontics, College of Dentistry, Wonkwang University)
  • 박영주 (원광대학교 치과대학 교정학교실) ;
  • 오소택 (원광대학교 치과대학 교정학교실) ;
  • 강경화 (원광대학교 치과대학 교정학교실) ;
  • 김상철 (원광대학교 치과대학 교정학교실)
  • Published : 2003.12.01

Abstract

Mammalian cell is critically dependent on a continuous supply of oxygen. Even brief periods of oxygen deprivation can result in profound cellular damage. The aim of this study was to examine the possible mechanism of apoptosis in response to hypoxia in MC3T3E1 osteoblasts. MC3T3El osteoblasts under hypoxic conditions ($2\%$ oxygen) resulted in apoptosis in a time-dependent manner, determined by DNA fragmentation assay and nuclear morphology, stained with fluorescent dye (Hoechst 33258) Pretreatment with Z-VAD-FMK, a pancaspase inhibitor, or Z-DEVD-CHO, a specific caspase-3 inhibitor, suppressed the DNA ladder in response to hypoxia in a concentration dependent manner. An increase in caspase-3-like protease (DEVDase) activity was observed during apoptosis, but no caspase-l activity (YVADase) was detected. To confirm what caspases were involved in apoptosis, western blot analysis was performed using an anticaspase-3 or 6 antibody. The 17-kDa protein, that corresponds to the active products of caspase-3 and the 20-kDa protein of the active protein of caspase-6 were generated in hypoxia-challenged lysates, in which the full length forms of caspase-3 and 6 were evident. With a time course similar to caspase-3 and 6 activation, hypoxic stress also caused the cleavage of Lamin A, typical of caspase-6 activity. In addition, the hypoxic stress elicited the release of cytochrome c into the cytosol during apoptosis. These findings suggested that the activation of caspases accompanied by a cytochrome c release in response to hypoxia was involved in apoptotic cell death in MC3T3E1 osteoblasts.

본 연구는 MC3T3El 조골세포가 저산소증에 반응하여 유발될 수 있는 세포 고사조절 기전을 구명하고자 함에 목적이 있다. $2\%$ 저산소증의 조건하에서 MC3T3El 조골세포는 DNA 사다리 분절 헝성을 보였으며 형광성 염료인 Hoechst 33258로 염색된 핵 구조 형태 관찰시 시간이 지남에 따라 세포고사 현상을 관찰할 수 있었다 Pancaspase 억제제인 Z-VAD-FMK나 특정한 caspase-3 억제제인 Z-DEVD-CHO로 사전 처치하였을 경우에는 저산소증에 의한 DNA 사다리 분절형성이 농축에 비례하여 억제되었다. caspase-3류의 프로테아제(DEVDase) 활성 증가가 세포고사 중에 관찰되었으나 caspase-1 (YVADase)의 활성은 없었다. 어떤 caspase가 세포고사에 관여하는지를 확인하기 위하여 anti-caspase-3 또는 anti-caspase-6의 항체를 이용한 western blotting이 시행되었다. caspase-3의 활성산물에 해당하는 17-KDa단백질과 caspase-6의 활성산물인 20-KDa 단백질이 세포용해물에서 발생되었다. 또한 시간 경과와 더불어 caspase-6의 활동의 상징인 Lamin A의 분열을 일으켰으며, 사이토크롬 C를 cytosol로 방출하였다. 이로써 저산소증에 의한 조골세포의 고사 과정에 사이토크롬 C의 방출이 포함된 caspase의 활성이 관여한다는 것을 확인할 수 있었다.

Keywords

References

  1. Nitatori T, Sato N, Waguri S. et. al. Delayed neuronal death in the CA1 pyra-midal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci 1995 : 15 : 1001-11
  2. Araya R, Uehara T, Nomura Y : Hypoxia induces apoptosis in human neuroblastoma SK-N-MC cells by caspase activation accompanying cytochrome c release from mitochondria. FEBS Lett 1998 : 439 : 168-72 https://doi.org/10.1016/S0014-5793(98)01363-5
  3. van't Hof RJ, Ralston SH. Cytokine-induced nitric oxide inhibits bone sorption by inducing apoptosis of osteoclast progenitors and suppressing osteoclast activity. J Bone Miner Res 1997 : 12 : 1797-804
  4. Shimizu S, Eguchi Y, Kosaka H, Kamiike W, Matsuda H, Tsujimoto Y. Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL. Nature 1995 : 374 : 811-3
  5. Jacobson MD, Raft MC. Programmed cell death and Bcl-2 protection in very lowoxygen. Nature 1995 : 374 : 814-6
  6. Krajewski S, Krajewska M, Ellerby LM. et. al. Release of caspase-9 from mitochondria during neuronal apoptosls and cerebral ischemia. Proc Natl Acad Sci USA 1999 : 96 : 5752-7
  7. Salvesen GS, Dixit VM. Caspases : intracellular signaling by proteolysis. Cell 1997 : 91 : 443-6 https://doi.org/10.1016/S0092-8674(00)80430-4
  8. Pettmann B, Henderson CE, Neuronal cell death. Neuron 1998 : 20: 633-47
  9. Miura M, Yuan J. Mechanism of programmed cell death in Caen-orhabditis elecans and vertebrates. Curr. Top. Dev. Biol 1996 : 32 : 139-74
  10. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998 : 281 : 1305-8
  11. Lazebnik VA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 1994 : 371 : 346-7
  12. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors Cell 1998 : 94 : 481-90.
  13. Li P, Nijhawan D, Budihardjo I. et. al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997 : 91 : 479-89
  14. Pan G, O'Rourke K, Dixit VM. Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. J Bioi Chem 1998 : 273 : 5841-5 https://doi.org/10.1074/jbc.273.10.5841
  15. Thomberry NA, Lazebnik Y. Caspases : enemies within. Science 1998 : 281 : 1312-6 https://doi.org/10.1126/science.281.5381.1312
  16. Borutaite V, Morkuniene R, Budriunaite A. et. al. Kinetic analysis of changes in activity of heart mitochondrial oxidative phosphorylation system induced byischemia. J Mol Cell Cardiol 1996 : 28 : 2195-201
  17. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 1997 : 275 : 1132-6
  18. Pastorino JG, Chen ST, Tafani M, Snyder JW, Farber JL. The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J Biol Chem 1998 : 273 : 7770-5
  19. Chae HJ, Chae SW, Weon KH, Kang JS, Kim HR. Signal transduction of thapsigargin-induced aooptosls in osteoblast. Bone 1999 : 25 : 453-8
  20. Nakazawa M, Uehara T, Nomura Y. Koningic acid (a potent glyceraldehyde-3-phosphate dehydrogenase inhibitor)-induced fragmentation and condensation of DNA in NG108-15cells. J Neurochem 1997 : 68 : 2493-9
  21. Cheng Y, Deshmukh M, D'Costa A. et. al. Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injurY. J Clin Invest 1998 : 101 : 1992-9
  22. Takahashi A, Alnemri ES, Lazebnik VA. et. al. Cleavage of lamin A by Mch2 alpha but not CPP32 : multiple interleukin 1 beta-converting enzyme-related proteases with distinct substrate recognition properties are active in apoptosis. Proc Natl Acad Sci USA 1996 : 93 : 8395-400
  23. Uehara T, Kaneko M, Tanaka S, Okuma Y, Nomura Y. Possible involvement of p38 MAP kinase in HSP 70 expression induced by hypoxia in rat primary astrocytes. Brain Res 1999 : 823 : 226-30
  24. Kim CN, Wang X, Huang Y. et. al. Overexpression of Bcl-X(L) inhibits Ara-C-induced mitochondrial loss of cytochrome c and other perturbations that activate the mol-ecular cascade of apoptosis. Cancer Res 1997 : 57 : 15-3120
  25. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 1997 : 275 : 1132-6
  26. Zhivotovsky B, Orrenius S, Brustugun OT, Doskeland SO. Injected. cytochrome c induces apoptosis. Nature 1998 : 391 : 449-50
  27. Hampton MB, Zhivotovsky B, Slater AF, Burgess DH, Orrenius S. Importance of the redox state of cytochrome c during caspase activation in cytosolic extracts. Biochem J 1998 : 329 : 95-9
  28. Li P, Nijhawan D, Budihardjo I. et. al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997 : 91 : 479-89