Relationship between maximum bite force and facial skeletal pattern

최대 교합력과 안면 골격 형태에 관한 연구

  • Choi, Won-Cheul (Department of Orthodontics, College of Dentistry, Seoul National University) ;
  • Kim, Tae-Woo (Department of Orthodontics, College of Dentistry, Seoul National University)
  • Published : 2003.12.01

Abstract

The purpose of this study was to measure maximum bite force and to investigate its relationship with anteroposterior, vertical, and transverse facial skeletal measurements. From among the dental students at the College of Dentistry, forty subjects (26 male and 14 female) were selected. With two sets of strain gauge, maximum bite force at the right and left first molars and anterior teeth was measured in the morning and afternoon. After taking lateral and posteroanterior cephalograms, fifty and nineteen variables were evaluated, respectively Paired t-tests and an independent t-test were done and correlation coefficients were obtained. 1. The maximum bite force at the first molars was $68.0\pm13.9kg$. in males and $55.6\pm10.5kg$ in females (p<0.05) while the force at the anterior teeth was $8.4\pm4.9kg\;and\;1.1\pm3.4kg$ respectively (p<0.05). 2. Some tendency for a greater value of maximum bite force at the preferred side was observed but not statistically significant (p>0.05). 3. Significant difference was observed between the strong bite force group and the weak bite force group in some cephalometric and other measurements (p<0.05). N-S-Ar, S-Ar-Go, FH-Hl, IMPA and MMO showed a significant difference in posterior maximum bite force (P). N-S-Ar and FH-H1 also showed a significant difference in anterior maximum bite force (A). 4. Several cephalometric variables showed some correlation with maximum bite force (p<0.05). N-S-Ar, S-Ar-Go, UGA, FH-H6, FH-H1, body weight and MMO were significantly correlated with posterior maximum bite force (P). Go-Me, P-1 and IMPA were significantly correlated with anterior maximum bite force (A).

본 연구의 목적은 최대 교합력을 측정하여 전후방적, 수직적 및 횡적인 안면 골격 요소들과의 관련성을 연구하는 것이다. 연구 대상으로 남녀 대학생들을 각각 26명과 14명씩 총 40명을 선택하였다. 본 연구를 위하여 개발된 strain gauge를 이용한 장치로 좌우 제1대구치와 전치부에서 최대 교합력을 측정하였다. 두부방사선 사진을 촬영하여 여러 계측 항목들을 측정하고, 통계분석을 시행하여 다음의 결과를 얻었다. 1. 제 1대구치 최대 교합력은 남자는 $68.0\pm13.9kg$, 여자는 $55.6\pm10.5kg$ 이었고 (p<0.05), 전치에서 남자는 $8.4\pm4.9kg$, 여자는 $5.1\pm3.4kg$이었다(p<0.05). 2. 저작을 선호하는 쪽의 교합력이 더 크게 나타나는 경향을 보였지만 통계적으로 유의한 차이는 없었다(P>0.05). 3. 최대교합력이 강한 군과 약한군 간에 여러 항목들에서 유의한 차이를 나타내었는데, 제1대구치 최대 교합력에 대해서는 N-S-Ar, S-Ar-Go, FH-H1, IMPA 그리고 MMO 항목들이 유의한 차이를 보였고, 전치부 최대 교합력에 대해서는 N-S-Ar 과 FH-H1 항목들이 유의한 차이를 보였다(p<0.05). 4. 최대 교합력과 유의성 있는 상관 관계를 보인 항목들은 제1대구치 최대 교합력에 대해서는 N-S-Ar, S-Ar-Go, UGA, FH-H6, FH-H1, body weight 그리고 MMO, 전치부 최대 교합력에 대해서는 Go-Me, P-1 그리고 IMPA등 이었다(p<0.05). 이상의 결과들을 종합해 볼 때, 제1대구치의 최대 교합력은 수직 전안면 고경이 짧을수록 증가하였다. 전치의 최대 교합력은 하악체 길이가 길수록, 상악 전방 치조부 고경이 클수록, 그리고 하악 절치들이 설측으로 경사져 있을수록 증가하였다(P<0.05).9\%$ 수준이었으며, 인장결합강토(TBS)에 대해서는 $52\%$ 수준이었고, Chessboard base에서 최저 Peel bond strength$(_{60}PBS)$는 전단결합강도(SBS)의 $34\%$ 수준이었으며, 인장결합강도(TBS)에 대해서는 $61\%$ 수준이었으며, Non-etched Foil-Mesh base에서 최저 Peel 결합 강도$(_{60}PBS)$는 전단결합강도(SBS)의 $34\%$ 수준이었으며, 인장결합강도(TBS)에 대해서는 $55\%$ 수준이었다. 4. 단위 면적 당 결합강도에 있어서 전단결합강도(SBS)와 인장결합강도(TBS) 및 $75^{\circ}\;와\;90^{\circ}$ peel 결합강도는 Micro-Loc base와 Chessboard base에서 차이 가 없었으며 Non-etched Foil-Mesh base에서 가장 작았고(p<0.05), $0^{\circ},\;15^{\circ},\;30^{\circ},\;60^{\circ}$ peel응력을 적용한 결과 Chessboard base에서 가장 큰 Peel결합강도를, Non-etched Foil-Mesh base에서 가장 작은 결합강도를 보였다(p<0.05).았다. 6. 주사전자현미경으로 본 표면은 모든 제품에서 생산과정 중에 보이는 압흔과 pitting이 관찰되는데, 진성기업의 Stainless Steel은 가늘고 긴 압흔이 있으며 비교적 매끄러운 표면을 보이고, Unitek사의 경우 압흔과 함께 pitting 이 관찰되며, Ormco Stainless Steel의 경우 불규칙한 pitting이 다수 존재했다.수술 시행 시기별의 차이를 보이지 않고 고른 분포를 보였다. 10. 내원한 환자를 순구개열

Keywords

References

  1. Lee JH. Oral Physiolgy (the 3rd edition), Seoul: Eui-Hak publishing Co.,1985 : 60,121
  2. Finn RA. Relationship of vertical maxillary dysplasia, bite force and integrated EMG. Ann Arbor, MI, Abstracts and Conference on Craniofacial Research, University of Michigan Center of Human Growth and Development, 1978
  3. Braun S, Bantleon HP, Hnat WP, Freudenthaler JW, Marcotte MR, Johnson BE. A study of bite force: Part I. Relationship to various physical characteristics. Angle Orthod 1995 : 65 : 367-72
  4. Throckmorton GS, Finn RA, Bell WH, Biomechanics of differences in lower facial height. Am J Orthod 1980 : 77 : 410-20
  5. Proffit WR, Fields HW, Nixon WL. Occlusal forces in normal and long-face adults. J Dent Res 1983: 62 : 566-570 https://doi.org/10.1177/00220345830620051201
  6. Fields HW, Proffit WR, Case JC, Vig KW. Variables affecting measurements of vertical occlusal force. J Dent Res 1986 : 65 : 135-8
  7. Ringqvist M. Isometric bite force and its relation to dimensions of the facial skeleton. Acta Odont Scand 1973 : 31 : 35-42 https://doi.org/10.3109/00016357309004611
  8. Garner LD, Kotwal NS. Correlation study of incisive biting forces with age, sex and anterior occlusion. J Dent Res 1973 : 52 : 698-702
  9. Denzinger FW. A study of the correlation of incisal biting force and cephalometric patterns. Indianapolis, Indiana: Indiana University School of Dentistry 1971
  10. Braun S, Bantleon HP, Hnat WP, Freudenthaler JW, Marcotte MR, Johnson BE. Astudy of bite force : Part Ⅱ. Relationship to various cephalometric measurements. Angle Orthod 1995 : 65 : 373-7
  11. Sasaki K, Hannam AG, Wood WW. Relationship between the size, position and angulation of human jaw muscles and unilateral first molar bite force. J Dent Res 1989 : 68 : 499-503
  12. Pruim GJ, de Jongh HJ, ten Bosch JJ. Forces acting on the mandible during bilateral static bite at different bite force levels. J Biomech 1980 : 13 : 755-63
  13. Bakke M, Tuxen A, Vilmann P, Jensen BR, Vilmann A, Toft M. Ultrasound image of human masseter muscle related to bite force, electromyography, facial morphology, and occlusal factors. Scan J Res 1992 : 100 : 164-71
  14. Braun S, Hnat WP, Freudenthaler JW, Marcotte MR, Johnson BE. A study of maximum bite force during growth and development. Angle Orthod 1996 : 66 : 261-4
  15. Dean JS, Throckmorton GS, Ellis EE, Sinn DP. A preliminary study of maximum voluntary bite force and jaw muscle efficiency in preorthognathic surgery patients. J Oral Maxillofac Surg 1992 : 50 : 1284-8
  16. Bakke M, Holm B, Jensen BL, Michler L, Moller E. Unilateral, iso-metric bite force in 8-68-year-old women and men related to occlusal factors. Scand J Dent Res 1990: 98 : 149-58
  17. Linderholm H, Wennstrom A. Isometric bite force and its relation to general muscle form and body build. Acta Odontol Scand 1970 : 28 : 679-89
  18. Hellsing E, Hagberg C. Changes in maximum bite force related to extension of the head. European J Orthod 1990 : 12 : 148-53
  19. Osborne JW, Mao J. Athin bite orce transducer with three-dimensional capabilities reveals a consistent change in bite-force direction during human jaw-muscle endurance tests. Archs Oral Biol 1993 : 38 : 139-44
  20. Kim IC. A study on the bite forces of Korean following differential occlusion. J Korea Dentistry 1985: 18: 51-55
  21. Lee TW, Lee KS. Isometric biteforces and its relation to cranio-facial morphology. Korea. J. Orthod. 1991 : 21 : 185-95
  22. Miyamoto K, Yamada K, Ishizuka Y, Morimoto N, Tanne K. Masseter muscle activity during the whole day in young adults. Am J Orthod Dentofac Orthop 1996 : 110 : 394-8
  23. Thompson DJ, Throckmorton GS, Buschang PH. The effects of isometric exercise on maximum voluntary bite forces and jaw muscle strength and endurance. J Oral Rehabil 2001 : 28 : 909-17
  24. Brasel JA, Gruen RH. Cellular growth : Brain, liver, muscle, and lung. In : Falkner F and Tanner JM ed. Human Growth, Vol.2 Postnatal Growth. New York : Plenum Press, 1978: 3-17
  25. Kiliaridis S, Kalebo P. Masseter muscle thickness measured by ultrasonography and its relation to facial morphology. J Dent Res 1991 : 70 : 1262-5
  26. Raadsheer MC, Kiliaridis S, Van Eijden TM, Van Ginkel FC, Prahl-Andersen B. Masseter muscle thickness in growing individuals and its relation to facial morphology. Archs Oral Biol 1996 : 41 : 323-332
  27. Van Spronsen PH, Weijs WA, Valk J, Prahl-Andersen B, Van Ginkel FC. Relationships between jawmuscle cross-sections and craniofacial morphology in normal adults, studied with magnetic resonance imaging. Eur J Orthod 1991 : 13: 351-61
  28. Van Spronsen PH, Weijs WA, Valk J, Prahl-Andersen B, Van Ginkel FC. Comparison of jaw-muscle bite-force cross-sections obtained by means of magnetic resonance imaging and highresolution CT scanning. J Dent Res 1989 : 68 : 1765-70
  29. Raadsheer MC, Van Eijden, Van Ginkel FC, Prahl-Andersen B. Contribution of jaw muscle size and craniofacial morphology to human bite force magnitude. J Dent Res 1999 : 78 : 31-42
  30. Hannam AG, Wood WW. Relationships between the size and spatial morphology of human masseter and medial pterygoid muscles, the craniofacial skeleton, and jaw biomechanics. Am J Phys Anthropol 1989 : 80 : 429-45