DOI QR코드

DOI QR Code

Apoptosis Induction by Methanol Extract of Prunus mume Fruits in Human Leukemia U937 Cells

인체 백혈병세포에서 매실 추출물에 의한 apoptosis 유도

  • Chung, You-Jeong (Department of Biochemistry, Research Institute of Oriental Medicine, Dongeui University College of Oriental Medicine) ;
  • Park, Cheol (Department of Biochemistry, Research Institute of Oriental Medicine, Dongeui University College of Oriental Medicine) ;
  • Jeong, Yong-Kee (Department of Medical Bioscience, Graduate School and Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • Choi, Yung-Hyun (Department of Biochemistry, Research Institute of Oriental Medicine, Dongeui University College of Oriental Medicine)
  • 정유정 (동의대학교 한의과대학 생화학교실 및 한의학연구소) ;
  • 박철 (동의대학교 한의과대학 생화학교실 및 한의학연구소) ;
  • 정영기 (동아대학교 생명공학과 및 대학원 의생명과학과) ;
  • 최영현 (동의대학교 한의과대학 생화학교실 및 한의학연구소)
  • Received : 2011.03.19
  • Accepted : 2011.03.24
  • Published : 2011.08.30

Abstract

In the present study, the pro-apoptotic effects of methanol extract of Prunus mume fruits (MEPM) in human leukemia U937 cells were investigated. It was found that exposure to MEPM resulted in growth inhibition in a concentration-dependent manner by inducing apoptosis. The induction of apoptotic cell death in U937 cells by MEPM was correlated with a down-regulation of inhibitor of apoptosis protein (IAP) family, such as X-linked inhibitor of apoptosis protein (XIAP) and survivin, anti-apoptotic Bcl-2, up-regulation of FasL and cleavage of Bid. MEPM treatment also induced the proteolytic activation of caspase-3, caspase-8 and caspase-9, and degradation of caspase-3 substrate proteins, such as poly (ADP-ribose) polymerase (PARP) and ${\beta}$-catenin. In addition, apoptotic cell death induced by MEPM was significantly inhibited by z-DEVD-fmk, a caspase-3 specific inhibitor, which demonstrates the important role of caspase-3 in the apoptotic process by MEPM in U937 cells. Taken together, these findings suggest that P. mume extracts may be a potential chemotherapeutic agent for the control of human leukemia cells and further studies will be needed to identify the active compounds.

예로부터 한국, 일본 및 중국에서 민간처방 약재 및 건강식품으로 사용되어온 매실은 다양한 효능을 가지는 것으로 알려져 있으나 인체 암세포에서 유발하는 항암작용 및 그에 따른 분자생물학적 기작에 대해서는 명확히 밝혀져 있지 않다. 본 연구에서는 인체 혈구암 U937 세포에서 매실의 메탄올 추출물(MEPM)이 유발하는 항암효과 및 항암기전을 조사한 결과, MEPM 처리 농도 의존적으로 암세포의 성장억제 및 apoptosis를 유발하는 것으로 나타났다. MEPM에 의해서 유발되는 apoptosis에는 XIAP 및 survivin 등과 같은 IAP family의 발현 감소와 더불어 FasL의 발현 증가, Bcl-2의 발현 감소 및 Bid의 단편화 현상이 관여하는 것으로 나타났으며, 두 가지 apoptosis 유발 개시 및 최종 apoptosis 단계에서 중요한 역할을 하는 caspase-8과 -9 및 -3의 활성화와 그에 따른 다양한 기질단백질의 발현 감소 및 단편화가 동반되었음을 알 수 있었다. 또한 인위적인 caspase-3의 활성 차단으로 MEPM에 의하여 유발되는 apoptosis가 현저하게 억제되는 것으로 나타났다. 이상의 결과에서 MEPM은 암세포의 chemotherapeutic agent로서의 가능성을 확인하였지만 향후 지속적인 연구를 통하여 활성물질의 동정 및 관련 기전의 비교 등이 지속적으로 이루어져야 할 것으로 생각된다.

Keywords

References

  1. Abramson, N. and B. Melton. 2000. Leukocytosis: basics of clinical assessment. Am. Fam. Physician. 62, 2053-2060.
  2. Ashkenazi, A. and V. M. Dixit. 1999. Apoptosis control by death and decoy receptors. Curr. Opin. Cell Biol. 11, 255-260. https://doi.org/10.1016/S0955-0674(99)80034-9
  3. Burlacu, A. 2003. Regulation of apoptosis by Bcl-2 family proteins. J. Cell Mol. Med. 7, 249-257. https://doi.org/10.1111/j.1582-4934.2003.tb00225.x
  4. Chang, H., H. Lin, L. Yi, J. Zhu, Y. Zhou, M. Mi, and Q. Zhang. 2010. 3,6-Dihydroxyflavone induces apoptosis in leukemia HL-60 cells via reactive oxygen species-mediated p38 MAPK/JNK pathway. Eur. J. Pharmacol. 648, 31-38. https://doi.org/10.1016/j.ejphar.2010.08.020
  5. Choi, H. J., O. H. Kang, P. S. Park, H. S. Chae, Y. C. Oh, Y. S. Lee, J. G. Choi, G. H. Lee, O. H. Kweon, and D. Y. Kwon. 2007. Mume fructus water extract inhibits pro-inflammatory mediators in lipopolysaccharide-stimulated macrophages. J. Med. Food 10, 460-466. https://doi.org/10.1089/jmf.2006.198
  6. Chuda, Y., H. Ono, M. Ohnishi-Kameyama, K. Matsumoto, T. Nagata, and Y. Kikuchi. 1999. Mumefural, citric acid derivative improving blood fluidity from fruit-juice concentrate of Japanese apricot (Prunus mume Sieb. et Zucc). J. Agric. Food Chem. 47, 828-831. https://doi.org/10.1021/jf980960t
  7. Danial, N. N. and S. J. Korsmeyer. 2004. Cell death: critical control points. Cell 116, 205-219. https://doi.org/10.1016/S0092-8674(04)00046-7
  8. De Laurenzi, V. and G. Melino. 2000. Apoptosis. The little devil of death. Nature 406, 135-136. https://doi.org/10.1038/35018190
  9. Deveraux, Q. L. and J. C. Reed. 1999. IAP family proteins- suppressors of apoptosis. Genes Dev. 13, 239-252. https://doi.org/10.1101/gad.13.3.239
  10. Deveraux, Q. L., N. Roy, H. R. Stennicke, T. Van Arsdale, Q. Zhou, S. M. Srinivasula, E. S. Alnemri, G. S. Salvesen, and J. C. Reed. 1998. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. 17, 2215-2223. https://doi.org/10.1093/emboj/17.8.2215
  11. Deveraux, Q. L., R. Takahashi, G. S. Salvesen, and J. C. Reed. 1997. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388, 300-304. https://doi.org/10.1038/40901
  12. Fesik, S. W. 2005. Promoting apoptosis as a strategy for cancer drug discovery. Nat. Rev. Cancer 5, 876-885. https://doi.org/10.1038/nrc1736
  13. Fulda, S. and K. M. Debatin. 2006. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25, 4798-4811. https://doi.org/10.1038/sj.onc.1209608
  14. Gao, Z., Y. Tian, J. Wang, Q. Yin, H. Wu, Y. M. Li, and X. Jiang. 2007. A dimeric Smac/diablo peptide directly relieves caspase-3 inhibition by XIAP. Dynamic and cooperative regulation of XIAP by Smac/Diablo. J. Biol. Chem. 282, 30718-30727. https://doi.org/10.1074/jbc.M705258200
  15. Gilliland, D. G., C. T. Jordan, and C. A. Felix. 2004. The molecular basis of leukemia. Hematology Am. Soc. Hematol. Educ. Program 80-97.
  16. Gupta, S. 2003. Molecular signaling in death receptor and mitochondrial pathways of apoptosis. Int. J. Oncol. 22, 15-20.
  17. Hacki, J., L. Egger, L. Monney, S. Conus, T. Rossé, I. Fellay, and C. Borner. 2000. Apoptotic crosstalk between the endoplasmic reticulum and mitochondria controlled by Bcl-2. Oncogene 19, 2286-2295. https://doi.org/10.1038/sj.onc.1203592
  18. Han, S. I., Y. S. Kim, and T. H. Kim. 2008. Role of apoptotic and necrotic cell death under physiologic conditions. BMB Rep. 41, 1-10. https://doi.org/10.5483/BMBRep.2008.41.1.001
  19. Harris, M. H. and C. B. Thompson. 2000. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ. 7, 1182-1191. https://doi.org/10.1038/sj.cdd.4400781
  20. Jin, Z. and W. S. El-Deiry. 2005. Overview of cell death signaling pathways. Cancer Biol. Ther. 4, 139-163. https://doi.org/10.4161/cbt.4.2.1508
  21. Kekre, N., C. Griffin, J. McNulty, and S. Pandey. 2005. Pancratistatin causes early activation of caspase-3 and the flipping of phosphatidyl serine followed by rapid apoptosis specifically in human lymphoma cells. Cancer Chemother. Pharmacol. 56, 29-38. https://doi.org/10.1007/s00280-004-0941-8
  22. Khan, N., V. M. Adhami, and H. Mukhtar. 2008. Apoptosis by dietary agents for prevention and treatment of cancer. Biochem. Pharmacol. 76, 1333-1339. https://doi.org/10.1016/j.bcp.2008.07.015
  23. Kim, B. J., J. H. Kim, H. P. Kim, and M. Y. Heo. 1997. Biological screening of 100 plant extracts for cosmetic use (II): anti-oxidative activity and free radical scavenging activity. Int. J. Cosmet. Sci. 19, 299-307. https://doi.org/10.1111/j.1467-2494.1997.tb00194.x
  24. Korsmeyer, S. J. 1999. BCL-2 gene family and the regulation of programmed cell death. Cancer Res. 59, 1693s-1700s.
  25. Kroemer, G. and J. C. Reed. 2000. Mitochondrial control of cell death. Nat. Med. 6, 513-519. https://doi.org/10.1038/74994
  26. Lawen, A. 2003. Apoptosis-an introduction. Bioessays 25, 888-896. https://doi.org/10.1002/bies.10329
  27. Lazebnik, Y. A., S. H. Kaufmann, S. Desnoyers, G. G. Poirier, and W. C. Earnshaw. 1994. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346-347. https://doi.org/10.1038/371346a0
  28. Li, H., H. Zhu, C. J. Xu, and J. Yuan. 1998. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501. https://doi.org/10.1016/S0092-8674(00)81590-1
  29. Li, P., D. Nijhawan, I. Budihardjo, S. M. Srinivasula, M. Ahmad, E. S. Alnemri, and X. Wang. 1997. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489. https://doi.org/10.1016/S0092-8674(00)80434-1
  30. Liu, X., C. N. Kim, J. Yang, R. Jemmerson, and X. Wang. 1996. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157. https://doi.org/10.1016/S0092-8674(00)80085-9
  31. Loeb, L. A., K. R. Loeb, and J. P. Anderson JP. 2003. Multiple mutations and cancer. Proc. Natl. Acad. Sci. USA 100, 776-781. https://doi.org/10.1073/pnas.0334858100
  32. Lu, B., X. Wu, Y. Dong, J. Gong, and Y. Zhang. 2009. Mutagenicity and safety evaluation of ethanolic extract of Prunus mume. J. Food Sci. 74, T82-88. https://doi.org/10.1111/j.1750-3841.2009.01372.x
  33. Luo, X., I. Budihardjo, H. Zou, C. Slaughter, and X. Wang. 1998. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-490. https://doi.org/10.1016/S0092-8674(00)81589-5
  34. Meiler, J., and M. Schuler. 2006. Therapeutic targeting of apoptotic pathways in cancer. Curr. Drug. Targets 7, 1361-1369. https://doi.org/10.2174/138945006778559175
  35. Miyazawa, M., H. Utsunomiya, K. Inada, T. Yamada, Y. Okuno, H. Tanaka, and M. Tatematsu. 2006. Inhibition of Helicobacter pylori motility by (+)-Syringaresinol from unripe Japanese apricot. Biol. Pharm. Bull. 29, 172-173. https://doi.org/10.1248/bpb.29.172
  36. Mori, S., T. Sawada, T. Okada, T. Ohsawa, M. Adachi, and K. Keiichi. 2007. New anti-proliferative agent, MK615, from Japanese apricot "Prunus mume" induces striking autophagy in colon cancer cells in vitro. World J. Gastroenterol. 13, 6512-6517. https://doi.org/10.3748/wjg.13.6512
  37. Nakagawa, A., T. Sawada, T. Okada, T. Ohsawa, M. Adachi, and K. Kubota. 2007. New antineoplastic agent, MK615, from UME (a Variety of) Japanese apricot inhibits growth of breast cancer cells in vitro. Breast J. 13, 44-49. https://doi.org/10.1111/j.1524-4741.2006.00361.x
  38. Okada, H., and T. W. Mak. 2004. Pathways of apoptotic and non-apoptotic death in tumour cells. Nat. Rev. Cancer 4, 592-603. https://doi.org/10.1038/nrc1412
  39. Okada, T., T. Sawada, T. Osawa, M. Adachi, and K. Kubota. 2007. A novel anti-cancer substance, MK615, from ume, a variety of Japanese apricot, inhibits growth of hepatocellular carcinoma cells by suppressing Aurora A kinase activity. Hepatogastroenterology 54, 1770-1774.
  40. Oliver, F. J., G. de la Rubia, V. Rolli, M. C. Ruiz-Ruiz, G. de Murcia, and J. M. Murcia. 1998. Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. J. Biol. Chem. 273, 33533-33539. https://doi.org/10.1074/jbc.273.50.33533
  41. Peter, M. E. and P. H. Krammer. 2003. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ. 10, 26-35. https://doi.org/10.1038/sj.cdd.4401186
  42. Roy, N., Q. L. Deveraux, R. Takahashi, G. S. Salvesen, and J. C. Reed. 1997. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J. 16, 6914-6925. https://doi.org/10.1093/emboj/16.23.6914
  43. Salvesen, G. S., and C. S. Duckett. 2002. IAP proteins: blocking the road to death's door. Nat. Rev. Mol. Cell Biol. 3, 401-410. https://doi.org/10.1038/nrm830
  44. Scaffidi, C., S. Fulda, A. Srinivasan, C. Friesen, F. Li, K. J. Tomaselli, K. M. Debatin, P. H. Krammer, and M. E. Peter. 1998. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17, 1675-1687. https://doi.org/10.1093/emboj/17.6.1675
  45. Shi, Y. 2002. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell 9, 459-470. https://doi.org/10.1016/S1097-2765(02)00482-3
  46. Shtilbans, V., M. Wu, and D. E. Burstein. 2010. Evaluation of apoptosis in cytologic specimens. Diagn. Cytopathol. 38, 685-697. https://doi.org/10.1002/dc.21313
  47. Slee, E. A., M. T. Harte, R. M. Kluck, B. B. Wolf, C. A. Casiano, D. D. Newmeyer, H. G. Wang, J. C. Reed, D. W. Nicholson, E. S. Alnemri, D. R. Green, and S. J. Martin. 1999. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J. Cell Biol. 144, 281-292. https://doi.org/10.1083/jcb.144.2.281
  48. Stennicke, H. R. and G. S. Salvesen. 1998. Properties of the caspases. Biochim. Biophys. Acta. 1387, 17-31. https://doi.org/10.1016/S0167-4838(98)00133-2
  49. Sun, S. Y., N. Jr Hail, and R. Lotan. 2004. Apoptosis as a novel target for cancer chemoprevention. J. Natl. Cancer Inst. 96, 662-672. https://doi.org/10.1093/jnci/djh123
  50. Thomenius, M. J., N. S. Wang, E. Z. Reineks, Z. Wang, and C. W. Distelhorst. 2003. Bcl-2 on the endoplasmic reticulum regulates Bax activity by binding to BH3-only proteins. J. Biol. Chem. 278, 6243-6250. https://doi.org/10.1074/jbc.M208878200
  51. Yang, L., Z. Cao, H. Yan, and W. C. Wood. 2003. Coexistence of high levels of apoptotic signaling and inhibitor of apoptosis proteins in human tumor cells: implication for cancer specific therapy. Cancer Res. 63, 6815-6824.
  52. Yingsakmongkon, S., D. Miyamoto, N. Sriwilaijaroen, K. Fujita, K. Matsumoto, W. Jampangern, H. Hiramatsu, C. T. Guo, T. Sawada, T. Takahashi, K. Hidari, T. Suzuki, M. Ito, Y. Ito, and Y. Suzuki. 2008. In vitro inhibition of human influenza A virus infection by fruit-juice concentrate of Japanese plum (Prunus mume SIEB. et ZUCC). Biol. Pharm. Bull. 31, 511-515. https://doi.org/10.1248/bpb.31.511

Cited by

  1. Apoptotic Effect of Extract from Artemisia annua Linné by Akt/mTOR/GSK-3β Signal Pathway in Hep3B Human Hepatoma Cells vol.26, pp.7, 2016, https://doi.org/10.5352/JLS.2016.26.7.764
  2. Cytoprotective Effect of Ethanol Extract from Maesil (Prunus mume Sieb. et Zucc.) on Alloxan-induced Oxidative Damage in Pancreatic-cell, HIT-T15 vol.25, pp.2, 2012, https://doi.org/10.7732/kjpr.2012.25.2.184
  3. A Herbological Study on the Plants of Amygdalaceae in Korea vol.31, pp.1, 2016, https://doi.org/10.6116/kjh.2016.31.1.49.