• Title/Summary/Keyword: carrier-frequency offset

Search Result 258, Processing Time 0.018 seconds

Hybrid Synchronization Scheme for Multi-Carrier Communication Systems

  • Kim, Eung-Sun;Park, Sang-Kyu
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.3
    • /
    • pp.223-225
    • /
    • 2012
  • In this paper, we develop a symbol/frame time and carrier frequency synchronization scheme for multi-carrier signaling in wireless mobile channels. The proposed scheme achieves simultaneous time synchronization and carrier frequency offset estimation. Simulation results show that the frequency offset of multiple sub-carrier spacings can be estimated and that performance is improved with robustness regardless of the cyclic prefix length.

Self-Encoded Multi-Carrier Spread Spectrum with Iterative Despreading for Random Residual Frequency Offset

  • Jang, Won Mee;Chi, Liang
    • Journal of Communications and Networks
    • /
    • v.15 no.3
    • /
    • pp.258-265
    • /
    • 2013
  • In this study, we investigate the multi-carrier spread spectrum (MCSS) communication system which adopts the self-encoded spread spectrum in a downlink synchronous channel. It is very difficult to completely eliminate the frequency offset in practical channel scenarios. We demonstrate that the self-encoded MCSS (SE-MCSS) with iterative despreading manifests a remarkable immunity to residual frequency offset. The SE-MCSS can be an excellent candidate for the future generation of wireless services.

Design of a 16-QAM Carrier Recovery Loop for Inmarsat M4 System Receiver (Inmarsat M4 시스템 수신기를 위한 16-QAM Carrier Recovery Loop 설계)

  • Jang, Kyung-Doc;Han, Jung-Su;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.440-449
    • /
    • 2008
  • In this paper, we propose a 16-QAM carrier recovery loop which is suitable for the implementation of Inmarsat M4 system receiver. Because the frequency offset of ${\pm}924\;Hz$ on signal bandwidth 33.6 kHz is recommended in Inmarsat M4 system specification, carrier recovery loop having stable operation in the channel environment with large relative frequency offset is required. the carrier recovery loop which adopts only PLL can't be stable in relatively large frequency offset environment. Therefore, we propose a carrier recovery loop which has stable operation in large relative frequency offset environment for Inmarsat M4 system. The proposed carrier recovery loop employed differential filter-based noncoherent UW detector which is robust to frequency offset, CP-AFC for initial frequency offset acquisition using UW signal, and 16-QAM DD-PLL for phase tracking using data signal to overcome large relative frequency offset and achieve stable carrier recovery performance. Simulation results show that the proposed carrier recovery loop has stable operation and satisfactory performance in large relative frequency offset environment for Inmarsat M4 system.

A Carrier Frequency Offset Estimation Algorithm for IEEE802.11n system (IEEE802.11n 시스템에 적용가능한 반송파 주파수 옵셋 추정 알고리즘)

  • Jung, Hyeok-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.5
    • /
    • pp.21-29
    • /
    • 2008
  • This paper proposes a carrier frequency of set estimation algorithm for IEEE802.11n system. As IEEE802.11n is a multiple input multiple output(MIMO) system, so there are several combining techniques which are used in multiple receive antenna system. In this paper, we propose hybrid carrier frequency offset estimation algorithms using combining techniques in multiple receive antenna systems, and show that the proposed selection combining carrier frequency offset (CFO) estimation algorithm can estimate carrier frequency offset within 1/10 MSE error at SNR 10 dB in channel B and within 1/2 MSE error at SNR 10 dB in channel D rather than the conventional MIMO CFO one.

A robust frequency offset estimation scheme for an OFDM system (OFDM 수신기를 위한 강인한 주파수 옵셋 보정 기법)

  • Wui, Jung-Hwa;Hwang, Hu-Mor;Song, Jin-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3100-3102
    • /
    • 2000
  • In this paper, we propose to a robust frequency offset estimation method of OFDM signals. A carrier frequency offset may be decomposed into an integer multiple of the subcarrier spacing and a residual frequency offset. Fractional part of frequency offset is obtained by using the maximum likelihood estimation(MLE) method. And we use the correlation of the samples at the output of the discrete Fourier transform(DFT) to estimate integer part of frequency offset. The result shows that the estimation frequency offset is almost linear to frequency offset. We propose to an improved estimation error variance of the carrier frequency offset estimation. The proposed estimator has better performance than the conventional ones in terms of error variance and tracking range.

  • PDF

Fast Carrier Frequency Synchronization for CMMB Robust to Time Offset and Fading (시간 오프셋 및 페이딩 환경에 강인한 CMMB 고속 주파수 동기 알고리듬)

  • Kang, Eun-Su;Han, Dong-Seog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6C
    • /
    • pp.516-522
    • /
    • 2010
  • In this paper, the carrier frequency offset estimator is proposed for the China multimedia mobile broadcasting (CMMB). The fractional carrier frequency offset is estimated by utilizing the cyclic prefix in each CMMB symbol. In addition, the integer carrier frequency offset can be estimated with the synchronization signal in every CMMB frame. The proposed estimator is the most suitable for the frame structure of CMMB. It shows a prominent performance even in timing offset and multipath conditions.

An Improved Joint Detection of Frame, Integer Frequency Offset, and Spectral Inversion for Digital Radio Mondiale Plus

  • Kim, Seong-Jun;Park, Kyung-Won;Lee, Kyung-Taek;Choi, Hyung-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.601-617
    • /
    • 2014
  • In digital radio broadcasting systems, long delays are incurred in service start time when tuning to a particular frequency because several synchronization steps, such as symbol timing synchronization, frame synchronization, and carrier frequency offset and sampling frequency offset compensation are necessary. Therefore, the operation of the synchronization blocks causes delays ranging from several hundred milliseconds to a few seconds until the start of the radio service after frequency tuning. Furthermore, if spectrum inversed signals are transmitted in digital radio broadcasting systems, the receivers are unable to decode them, even though most receivers can demodulate the spectral inversed signals in analog radio broadcasting systems. Accordingly, fast synchronization techniques and a method for spectral inversion detection are required in digital radio broadcasting systems that are to replace the analog radio systems. This paper presents a joint detection method of frame, integer carrier frequency offset, and spectrum inversion for DRM Plus digital broadcasting systems. The proposed scheme can detect the frame and determine whether the signal is normal or spectral inversed without any carrier frequency offset and sampling frequency offset compensation, enabling fast frame synchronization. The proposed method shows outstanding performance in environments where symbol timing offsets and sampling frequency offsets exist.

Performance Analysis of ICI reduction in OFDM system (OFDM시스템에서 ICI 감소 기술의 성능해석)

  • Jang, Eun-Young;Byon, Kun-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1150-1155
    • /
    • 2007
  • Orthogonal Frequency Division Multiplexing (OFDM) is an emerging multi-carrier modulation scheme, which has been adopted for several wireless standards such as IEEE 802.11a and HiperLAN2. A well-known problem of OFDM is its sensitivity to frequency offset between the transmitted and received carrier frequencies. This frequency offset introduces inter-carrier interference (ICI) in the OFDM symbol. This paper investigates three methods for combating the effects of ICI: ICI self-cancellation (SC), maximum likelihood (ML) estimation, and extended Kalman filter (EKF) method. These three methods are compared in terms of bit error rate performance.

Fast Carrier Recovery for High-Order QAM Systems (고차의 QAM 시스템을 위한 고속 반송파 복원)

  • Lee, Chul-Soo;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4C
    • /
    • pp.371-376
    • /
    • 2010
  • In this paper, we propose a new fast carrier recovery algorithm for high-order QAM systems. The proposed algorithm detects carrier frequency offset from the phase differences among the received symbols directly and combines it with the conventional carrier recovery, so that it is possible to achieve the carrier recovery with wide tracking range and fast acquisition time. Simulation results show that the proposed carrier recovery method reduces acquisition time at large frequency offset and low signal-to-noise ratio (SNR).

Performance Analysis of OFDM Systems in the Presence of DC Offset and Frequency Offset (직류 성분 편차 및 주파수 편차가 존재하는 OFDM 시스템의 성능 분석)

  • Choi, Seung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.900-905
    • /
    • 2008
  • I perform bit error rate(BER) analysis of orthogonal frequency division multiplexing(OFDM) systems impaired by both direct current(DC) offset and carrier frequency offset. By analyzing the BER performance for real OFDM systems employing 16-quadrature amplitude modulation(QAM) and pilot symbol estimation, the dependency of BER on the DC offset and carrier frequency offset is quantified and compared to ideal performance. Results show that the magnitude of frequency offset and DC offset are required to be less than 0.01 and 0.007, respectively.