• Title/Summary/Keyword: carbonized length

Search Result 21, Processing Time 0.023 seconds

A Study on the Breakdown Mechanism of Rotating Machine Insulation

  • Kim, Hee-Gon;Kim, Hee-Soo;Park, Yong-Kwan
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.71-76
    • /
    • 1997
  • A lot of experiments and analyses have been done to determine the aging mechanism of mica-epoxy composite material used for large generator stator windings in order to estimate remaining life of the generator for last decades. After degrading artificially the mica-epoxy composite material, the surface analysis is performed to analyze breakdown mechanism of insulation in air and hydrogen atmosphere; i) In the case of air atmosphere, it is observed that an aging propagation from conductor to core by partial discharge effect and the formation of cracks between layers is widely carbonized surface. ii) In case of hydrogen atmosphere, the partial discharge effect is reduced by the hydrogen pressure (4kg/$\textrm{cm}^2$). Potassium ions forming a sheet of mica is replaced by hydrogen ions, which can lead to microcracks. It is confirmed that the sizes of crack by SEM analysis are 10∼20[$\mu\textrm{m}$] in length under air, and 1∼5[$\mu\textrm{m}$] in diameter, 10∼50[$\mu\textrm{m}$] in length under hydrogen atmosphere respectively. The breakdown mechanism of sttor winding insulation materials which are composed of mica-epoxy is analyzed by the component of materials with EDS, SEM techniques. We concluded that the postassium ions of mica components are replaced by H\ulcorner, H$_3$O\ulcorner at boundary area of mica-epoxy and/or mica-mica. It is proposed that through these phenomena, the conductive layers of potassium enable creation of voids and cracks due to thermal, mechanical, electrical and environmental stresses.

  • PDF

Preparation and Application of Fiber Composites made of Carbon Nanofibers and Carbide Nanofibers (나노탄소섬유와 나노카바이드섬유를 이용한 복합재의 제조와 활용에 관한 연구)

  • 임연수;김기덕;이재춘;김명수;김성수
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.569-575
    • /
    • 2000
  • Fabrication of carbon fiber reinforced composites was carried out by hand lay-up method. Carbon nanofibers and SiC nanofibers were used as filler in the composites fabrication. Carbon nanofibers, one of the new carbon materials, have 5∼500 nm in diameter and 5-10 nm in length. SiC nanofibers were modified by silicon monoxide vapor with carbon nanofibers. The composites were carbonized at 1000$^{\circ}C$ in a nitrogen atmosphere, and then densified by molten pitches impregnated in vacuum. Multiple cycles of liquid pitch impregnation and carbonization were carried out to obtain a desired density. The composites were characterized by density, microstructure. The inter-laminar shear strength (ILSS) test was performed for mechanical properties. For the new application, the microwave reflective proeprty of composites was investigated. Dielectric constant and permeability spectrum were measured in 12∼18 GHz frequency ranges. On the basis of the wave propagation theory in a lossy media, the reflection loss from the composite inter-layer was predict as a function of frequency.

  • PDF

Flame Retardancy of Plywood Treated with Various Water Glass Concentration and Additives (물유리의 농도와 첨가제 종류에 따른 방염제의 성능)

  • PARK, Sohyun;HAN, Yeonjung;SON, Dong Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.44-56
    • /
    • 2021
  • The carbonized length and area of plywood by the various spreading concentration of water glass and the type of additives were measured in accordance with the 45° MecKel's burner method of the fire protection performance standard of the Korean National Fire Agency. As a result of treating water glass with a concentration of 20 to 50 % on plywood, the flame retardancy tended to increase in proportion to the concentration of water glass. However, the optimum concentration of water glass was determined to be 30 % due to the efflorescence and sticky on the surface of plywood treated with high-concentration water glass of more than 30 %. As a result of the experiment by adding different proportions of additives to the water glass with concentration of 30 %, the standard of flame performance standard was satisfied under the conditions with the addition of 15% potassium hydroxide and 1-10% aluminum hydroxide, respectively. On the other hand, there were no significant difference in the flame retardancy by adding magnesium sulfate. These results about the flame retardancy of plywood by water glass and additives were expected to be basic data for improving flame-retardant treated wood.

A Comparative Study on the Effect of Fire Retardancy of the Plywood Treated by Ammonium Sulphate and Monoammonium Phosphate (황산암모늄과 제 1 암모늄처리(處理) 합판(合板)의 내화효과에 관(關)한 비교연구(比較硏究))

  • Lee, Phil-Woo;Kim, Cheol-San
    • Journal of the Korean Wood Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.23-30
    • /
    • 1983
  • This experiment was carried out for diminishing the material loss and the damage of human life due to the fire disaster by treating plywood with fire retardant chemical solution. At this study, we observed and measured chemical retention, burning point, maximum flame length, flame exausted time, carbonized area, and weight loss of plywood treated by each solution of ammonium sulphate [$(NH_4)_2SO_4$] and monoammonium phosphate [$NH_4H_2PO_4$]. Obtained results at the study may be summarized as follows: 1. In case of monoammonium phosphate-treated plywood, every tested item of fire retardancy was shown more excellent at the 25% chemical concentration and shown also at 9 hours treatment except maximum flame length compared with ammonium sulphate-treated plywood. 2. However in case of ammonium sulphate-treated plywood, 6 hours treatment of fire retardancy was better than 9 hours treating time. 3. Monoammonium phosphate was generally better than ammonium sulphate in every tested item.

  • PDF

Effect of Medium Materials on Growth and Yield of Sweet Pepper(Capsicum annuum L.) in Long Term Bag-Culture (배지종류가 단고추 자루식 장기 양액재배시 생육 및 수량에 미치는 영향)

  • 김경제;나상욱;우인식;강영식;허일범;김진한
    • Journal of Bio-Environment Control
    • /
    • v.6 no.2
    • /
    • pp.80-85
    • /
    • 1997
  • This study was conducted to select useful medium material as a replacement for the rockwool in long term bag-culture of sweet pepper. The sole use of perlite and carbonized rice hull(CRH) as well as their mixture with various combinations were compared to the rockwool. The results are summarized as the followings : 1. Plant height and number of leaves did not significantly differ among media. However, in the mixture of CRH(1) : Perlite(1), stem diameter was thicker; plant weight and root weight were heavier, and T/R ratio was lower. 2. Although fruit length and number of fruits did not significantly differ among media, the mixture of CRH(1) : Perlite(1) provided longer fruit length, more fruits, heavier fruit weight, and greater yield. 3. Monthly yield was continuously increased from the first harvest in November to the harvest in May next year. The amount of increase in the fruit yield of the mixture of CRH(1) : Perlite(1) from the first harvest to the final harvest was significantly greater than the amount of increase of other media. 4. The amount of total nitrogen and phosphate was higher in mixture of CRH (1) : Perlite(1), while the amount of other elements did not significantly differ among mixtures.

  • PDF

Column Tests for the Design of PRB System using CFW (음식폐기물 탄화재로 충진된 PRB설계법 제안을 위한 컬럼실험)

  • Han, Jung-Geun;Yoon, Won-Il;Jung, Dong-Ho;Kim, Yong-Soo;Lee, Jong-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.35-43
    • /
    • 2011
  • Permeable Reactive Barriers (PRB) method is an economical method that does not require any other methods to be operated once it is installed as it controls of groundwater flow in the barrier, which is inserted a reactive material on the way of pollutant. The major dominant element of PRB is a reactive material in the reactive wall, and such factors as purification efficiency and used time based on the chemical and physical features in between the reactant and pollutant. High purification efficiency can be expected when a rational design that is synthetically considered in features of packing density, operation period, and adsorption reactant of pollutant. A column test was conducted for an application test using CFW as its adsorption reactant in order to remove copper($Cu^{2+}$) in the PRB system. The CFW was used for the reactant and selected inflow speed, density and thickness of PRB as its necessary factors for design of PRB. As a result of the experiment, the removal efficiency decreased as operating time of PRB increased and the efficiency linearly increased upon the length. Therefore, it is confirmed that the thickness of reactive materials in PRB system can be designed using the proposed formula considering purification time and density of CFW.

Effect of Preparation Conditions of PAN-based Carbon Fibers on Electrochemical Characteristics of Rechargeable Lithium ion Battery Anode (PAN계 탄소섬유 제조조건에 따른 리튬이온 이차전지 음극의 전기화학적 특성)

  • An K. W.;Lee J. K.;Lee S. W.;Kim Y. D.;Cho W. I.;Ju J. B.;Cho B. W.;Park D. G.;Yun K. S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.81-87
    • /
    • 1999
  • Poly-acrylonitrile (PAN) based carbon fibers were stabilized under various tensions in the presence of air at about $200^{\circ}C$ and sequentially carbonized under some different gas environments in the range of 700 to $1500^{\circ}C$. The prepared carbon fibers were used for rechargeable lithium ion battery anode to investigate preparation parameters effects on electrochemical characteristics. It was found that the tension during stabilization, carbonization temperature and gas atmospheres affect the carbon fiber properties such as conductivity, mechanical strength, surface morphology and diffusion coefficient of lithium ion, which are closely related to the on electrolchemical properties as well as the charge/discharge characteristics.

Studies on the catalytic charcoaling (촉매적(觸媒的) 제탄(製炭)에 관(關)한 시험(試驗))

  • Park, Tae Sik;Park, Meung Gue
    • Journal of Korean Society of Forest Science
    • /
    • v.3 no.1
    • /
    • pp.18-22
    • /
    • 1963
  • 1. Objects The experiments of catalytic aharcoaling were carried out for the fallowing purposes. (1) To determine the economically desirable amount of catalytic materials to be used when a catalytic charcoaling is practiced. (2) To observe the rate of carbonization of non-treated charcoal wood when the catalytic charcoaling is proceeded in the same charcoal pit. 2. Meterials (1) Small sample chips made of oak (Q. accutissima Carr.), measured by 0.5cm in width and thickness, respectively, and 1cm in length, were used as charcoal wood in each experiment. (2) Ammonium chloride was used as a catalytic material and electric kiln as a charcoaling apparatus. 3. Experiment (1) The sample chips were put into a electric oven for three hours at the temperature $60^{\circ}{\sim}70^{\circ}C$ in order to reduce some water contents. (2) Oven dried sample chips were then soaked for an hour in solution of ammonium chloride. Three kinds of solution were prepared, that is, 2.5%, 5%, and 10%, solution in which the amount of ammonium chloride used was weighed at the rate of 0.5%, 1.0%, and 2.0% to the total weight of the sample chips, resppectivelly. (3) Soaked sample chips were put in the air for 12 hours to reduce some water contents, and then were put into electric oven for 2 hours at the temperature $105^{\circ}{\sim}110^{\circ}C$. (4) Dried sample chips were kept in a desiccator with control sample chips which were treated excarly the same process as the treated sample chips except only not using the ammonium chloride in the process of soking. (5) Sample chips kept in the desiccator were used at random in each charcoaling experiment. (6) Charcoaling in the electric kiln were carried out by using small crucibles with complete cover to reduce the amount of ash. At each charcoaling experiment four crucibles filled with sample ships, weighed about 20gr, were put into electric kiln. The charcoaling was continued for an hour at the temperature $400^{\circ}{\sim}450^{\circ}C$. (7) In order to investigate the influence given by the gases produced during the catalytic charcoaling to the rate of carbonization of non-treated sample chips, the following experiment was done. (a) A crueible was divided into two parts by inserting a fine iron net at the middle of the crucible, and then non-treated sample chips, weighed about 10gr, were put in the upper part of the crucible and treated sample chips, weighed also about 10gr, were put in the under part. (b) The crucibles filled with two kinds of sample chips were put into a electric kiln for an hour at the temperature $400^{\circ}{\sim}450^{\circ}C$. 4. Results. Results for two replications (with four crucibles in one replication) for each experiment designed are as follows : (1) The rats of carbonization of the non treated sample chips, and that of the treated sample chips with ammonium chloride at the rate of 1.5%, 1.0%, and 2.0% to the total weight of the sample chips used were averaged at 19.85%, 22.63%, 24.14%, and 26.60%, respectively. (2) The rats of carbonization of the non-treated sample chips were averaged at (a) 20.04% (0.5% treatment), (b) 20.28% (1.0% treatment), and (c) 20.61% (2.0% treatment) when the treated sample chips were carbonized in the same crucible.

  • PDF

Fabrication and the Electrochemical Characteristics of Petroleum Residue-Based Anode Materials (석유계 잔사유 기반 음극재 제조 및 그 전기화학적 특성)

  • Kim, Daesup;Lim, Chaehun;Kim, Seokjin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.496-501
    • /
    • 2022
  • In this study, an anode material for lithium secondary batteries was manufactured using petroleum-based residual oil, which is a petroleum refining by-product. Among petroleum-based residual oils, pyrolysis fuel oil (PFO), fluidized catalyst cracking-decant oil (FCC-DO), and vacuum residue (VR) were used as carbon precursors. The physicochemical characteristics of petroleum-based residual oil were confirmed through Matrix-assisted laser desorption/ionization Time-of-Flight (MALDI-TOF) and elemental analysis (EA), and the structural characteristics of anode materials manufactured from residual oil were evaluated using X-ray crystallography (XRD) and Raman spectroscopic techniques. VR was found to contain a wide range of molecular weight distributions and large amounts of impurities compared to PFO and FCC-DO, and PFO and FCC-DO exhibited almost similar physicochemical characteristics. From the XRD analysis results, carbonized PFO and FCC-DO showed similar d002 values. However, it was confirmed that FCC-DO had a more developed layered structure than PFO in Lc (Length of a and c axes in the crystal system) and La values. In addition, FCC-DO showed the best cycle characteristics in electrochemical characteristics evaluation. According to the physicochemical and electrochemical results of the petroleum-based residual oil, FCC-DO is a better carbon precursor for a lithium secondary battery than PFO and VR.

Effects of Soil mixtures and Soil Depths on the Growth of Zoysia japonica for the Artificial Planting Ground (인공지반의 토양조성과 토양심도가 중엽형들잔디의 생육에 미치는 영향)

  • Lee, Eun-Yeob;Moon, Seok-Ki
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.2
    • /
    • pp.24-32
    • /
    • 1999
  • To develope appropriate soil base for planting on the artificial ground, 9 kinds of soil types(varying the components and mixing ratios) and 3 levels of soil depths(10cm, 15cm, 20cm) were chosen. And their plant growing effects were tested and analysed from the test plant Zoysia japonica. The results of the research are as follows. 1. Among the 9 type of soil mixtures, the "sandy loam" soil type gave the worst effects on germination, disease contamination and ground covering. 2. The soil types like VSH(vermiculite20%+sand70%+humus sawdust10%), VSS(vermiculite 40%+sand 50%+humus sawdust 10%) and VS(vermiculite 70%+sand 30%), where vermiculite and sand were added to, show better germination effect promoted from the better condition of aeration and saturation. 3. The plant growing effects(leaf length and ground covering ratio) was evident under the soil types like VSH(vermiculite20%+sand70%+humus sawdust10%) and VSS(vermiculite40%+sand50%+humus sawdust10%), where organic matters were added to. 4. Vermiculite added soil types effect fast leaf decolorization on the tested Zoysia japonica plant, on the contrary to organic matter mixed soil types including SCS(sandy loam 50%+carbonized rice husk30%+sand20%) and SHS(sandy loam 50%+humus sawdust30%+sand20%) with which green leaves subsist longer. S. Soil depth effect to plant growth was found. And a favorable covering rate was accomplished even at the soil depth of 15cm - the limit soil depth for grass survival - from the soil types where organic matters were mixed to. From this result, the soil depth limit for plant survival could be said to be shall owed if appropriate soil type were based.

  • PDF