• Title/Summary/Keyword: carbonized

Search Result 390, Processing Time 0.035 seconds

Effects of Several Soil Composites and Fertilizers to Plant Growing on the Artificial Planting Ground (인공식재지반의 토양배합 및 비료종류에 따른 초본식물의 생육효과)

  • Lee, Eun-Yeob;Moon, Seok-Ki
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • To find pertinent soil type and maintenance method for artificial planting ground, the effects of soil compositions{sandy loam(S), vermiculite(V), sandy loam+vermiculite+sand(SVS), sandy loam+ carbonized rice husk+sand(SCS), sandy loam+humus sawdust+sand(SHS)}, and fertilizers (organic, chemical) on plant(kentuckyblue grass) growth were measured and compared from the field experiment. The results are summarized as follows 1. the highest germination rate is found from "vermiculite(V)" and the lowest from "sandy loam(S)" among tested 5 soil compositions. 2. "sandy loam+vermiculite+sand(SVS)" composition shows the highest plant height growth effect (5cm growth during tested 3 months) comparing to other 4 compositions. 3. "sandy loam+vermiculite+sand(SYS)" composition shows the highest ground covering rate after first two months, but it concede its order to "sandy loam+humus sawdust+sand(SHS)" composition after next one month growing. 4. the effects of fertilizers are follows 1) Among the blocks where no fertilizer was tried, the predominant height growth was obvious in "sandy loam+carbonized rice husk+sand(SCS)" and "sandy loam+humus sawdust+sand(SHS)" composition. 2) Among the blocks where chemical fertilizer was tried, relatively positive results were found from "vermiculite(V)" and "sandy loam+vermiculite+sand(SYS)" blocks on germination and growth rate. But on the ground coverage ratio, the effect of "sandy loam+carbonized rice husk+sand(SCS)" composite precede that of those 2 composites. 3) Among the blocks where organic fertilizer was tried, "sandy loam+humus sawdust+sand(SHS)" and "vermiculite(V)" blocks show relatively high ground coverage rate, growth rate than others. 4) When compositional differences were not considered, the block where organic fertilizer was tried shows most positive effects on all 3 measurements-germination ratio, height growth and ground covering.

  • PDF

Development of Carbonization Technology and Application of Unutilized Wood Wastes(II) - Carbonization and it's properties of wood-based materials - (미이용 목질폐잔재의 탄화 이용개발(II) - 수종의 목질재료 탄화와 탄화물의 특성 -)

  • Kong, Seog-Woo;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.57-65
    • /
    • 2000
  • Objective of research is obtain fundamental data of carbonized wood wastes for soil condition, de-ordorization, absorption of water, carrier for microbial activity, and purifying agent for water quality of river. The carbonization technique and the properties of carbonized wood wastes(wood-based materials) were analyzed. Proximate analysis showed the wood-based materials contains 0.37~2.27% ash, 70~74% volatile matter, and 17~20% fixed carbon. As carbonization temperature was increased, the charcoal yield was decreased. However, no difference in charcoal yield was found due to time increase. The specific gravity after the carbonization decreased about 30~40% comparing to green wood. The charcoal had 1.08~4.18% ash, 5.88~13.79% volatile matter, and 80.15~90.94% fixed carbon. The pH of plywood and particleboard(pH 9 at $400^{\circ}C$, pH 10 at $600^{\circ}C$ and $800^{\circ}C$) made charcoals was higher than that of fiberboard. The water-retention capacity was not affected by the carbonization temperature and time. The water-retention capacity within 24h was about 2~2.5 times of sample weight, and the Equilibrium moisture content(EMC) became 2~10% after 24h. EMC of charcoal from the thinned trees were 9.40~11.82%($20^{\circ}C$, RH 90%), 6.87~7.61%($20^{\circ}C$, RH 65%), and 1.69~2.81%($20^{\circ}C$, RH 25%). EMC of charcoal from the wood-based materials under $20^{\circ}C$, relative humidity(RH) 90% was similar to EMC of charcoal from the thinned trees(9~11 %). However, under $20^{\circ}C$, RH 25.65%, EMC of charcoal from the wood-based materials were higher(2~3%) than EMC of charcoal from the thinned trees. Every charcoal from the wood-based materials fulfilled the criteria in JWWA K 113-1947.

  • PDF

Growth of Red-leaf Lettuce and Changes in Soil Solution Chemical Properties of Coir-dust Containing Root Media Influenced by Application Rates of Pre-planting Fused-Superphosphate (코이어 더스트 혼합상토에 용과린의 시비수준에 의한 적축면 상추의 생장과 근권부 화학성 변화)

  • Kim, Chang Hyeon;Choi, Jong Myung;Lee, Dong Hoon
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.658-667
    • /
    • 2015
  • This research was conducted to investigate the influence of various levels of fused superphosphate as pre-planting fertilizer on the growth of red-leaf lettuce and changes in the chemical properties of the soil solution in three root media, namely coir-dust plus expanded rice hull (8:2, v/v; CD+ERH), carbonized rice hull (6:4; CD+CRH), or ground and aged pine bark (8:2; CD+GAPB). The amounts of fused superphosphate (FSP) incorporated into the three root media during formulation were controlled from 0 to $6.0g{\cdot}L^{-1}$ in $1.5g{\cdot}L^{-1}$ increments. The root media containing fertilizers were packed into 300 mL plastic pots and seedlings of red-leaf lettuce at the 3rd leaf stage were transplanted. After transplanting, the crops were fed with a solution of neutral fertilizer ($100mg{\cdot}L^{-1}$). The growth of red-leaf lettuce was investigated 5 weeks after transplanting and soil solutions were extracted and analyzed every week for pH, EC, and concentrations of macro-nutrients. The elevation of application rates of FSP in the three root media resulted in better growth, and the crops grown in CD+ERH and CD+GRPB had greater fresh and dry weights than those in CD+CRH when compared among the treatments of equal amounts of FSP. The pH and $PO_4{^{-3}}$ concentrations in the soil solution of CD+CRH at 3 weeks after transplant were in the ranges of 4.0 to 4.8 and 20 to $100mg{\cdot}L^{-1}$, respectively. These were lower pH and higher $PO_4{^{-3}}$ concentrations than those in CD+ERH and CD+GAPB. The $K^+$ concentrations were higher in CD+CRH than those in the other two root media, and the elevation of FSP application rates resulted in higher $Ca^{+2}$, $Mg^{+2}$ and $SO_4{^{-2}}$ concentrations in soil solution of the three root media. The $NO_3$-N concentrations in soil solution rose continuously during crop cultivation, implying that the leaching percentage was elevated. The soil solution EC varied, showing the same tendencies as the $NO_3$-N concentrations. The above results indicated that the CD+ERH and CD+GRPB media performed better than CD+CRH, and optimum application rates of FSP in the three root media were 4.5 to $6.0g{\cdot}L^{-1}$ for pot cultivation of red-leaf lettuce.

Characterization of Pine Bark Charcoal Prepared from Small and Large-Scale Carbonization Kilns (소용량 및 대용량 탄화로에서 제조된 소나무 수피탄의 특성)

  • 문성필;황의도;박상범;권수덕
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.2
    • /
    • pp.1-9
    • /
    • 2002
  • Pine bark was carbonized by using a small-scale experimental kiln and three different types of large-scale kilns (simple (400-$500^{\circ}C$), improved (600-$700^{\circ}C$) and special kiln (800-$1,000^{\circ}C$). The physical properties and pore structures of the bark charcoals prepared were analyzed. When the bark was carbonized at various temperatures ranging from 500 to $900^{\circ}C$in the presence of nitrogen, carbonization yield decreased rapidly with increasing carbonization temperature and it remained constant from 700 to $900^{\circ}C$. The carbonization yield of the bark was 16 - 18% higher than that of pine wood. The BET specific surface areas and iodine values increased with a decrease in carbonization yield. The BET specific surface areas of the bark charcoals reached about 400 -$500m^2/g$ for carbonization yield of 32-40%. The pine wood charcoal prepared at $600^{\circ}C$ for 30 min resulted in a more microporous structure, whereas the bark charcoal prepared at the same condition was more mesoporous. The carbonization yields and physical properties such as iodine values and BET specific surface areas of bark charcoals prepared by using the large-scale kilns were very similar to those of the small-scale kiln. The results indicated that the pine bark could be used as starting material to produce good quality charcoal having a large specific surface area and a high carbonization yield.

  • PDF

Effect of Short-Term Weathering on Flame Retardant Performance of Korean Red Pine Wood Coated with Dancheong (단기간 풍화가 단청도채된 소나무재의 방염성능에 미치는 영향)

  • Son, Dong Won;Hong, Jong Ouk;Park, Jin Ho;Lee, Hwa Soo;Chung, Yong Jae;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.785-808
    • /
    • 2016
  • The objective of this study was to investigate the effect of the short-term weathering on the flame retardant performance of wood coated with Dancheong. Flame retardants were applied on the Dancheong coated Korean red pine. Flame retardants applied panels were layed at the two conditions of outdoor exposure and artificial aging to assess the reliability of artificial aging. Flame retardants used were commercial products developed for historical wooden buildings. Scanning electron micrographs revealed the forming of carbonized membrane by melting of flame retardant on wood surface. These carbonized membranes may help delay the further combustion of wood. Flame retardant performance was assessed by measuring heat release rate (HRR) and total heat release (THR) by cone calorimetry. There was no difference in flame retardant performance between before and after 6-month outdoor exposure tests. And also no difference in flame retardant performance between before and after 2-week artificial aging which corresponds to 6-month outdoor exposure. Both tests showed the similar results of combustion characteristics.

Effect of Different Media on Growth and Yield in Hydroponic culture of Angelica keiskei Koidzumi (신선초(神仙草) 양액재배시(養夜載培時) 고형배지종류(固形培地種類)에 따른 생육(生育) 및 수량(收量))

  • Han, Seoung-Ho;Choi, Byung-Jun;Shin, Cheol-Woo;Chang, Ki-Woon;Han, Kwang-Seop;Choi, Kang-Ju;Woo, In-Sik;Park, Sang-Il
    • Korean Journal of Medicinal Crop Science
    • /
    • v.8 no.1
    • /
    • pp.29-40
    • /
    • 2000
  • This experiment was conducted to find appropriate media in hydroponic Culture of Angelica keiskei. The mediaused were carbonized rice hull, perlite, vermiculite, mixture(carbonized rice hull (1) : perlite (1) : peatmoss (1)), mixture+peatmoss20%, mixture+peatmoss40%, mixtrue+peatmoss60%, perlite 40%+peatmoss40%+vermiculite20% and open field cultivation. The highest yield of Angeli ca keiskei was shown 4,428ka/10a at vermiculite. The yield of vermiculite was increased about 133 percent compared to that of open field cultivation. The highest germanium contents was shown 0.52ppm at mixture+peatmoss 40%. The contents of germanium increased about 108 percent at mixture+peatmoss40% compared to that of open field cultivation.

  • PDF

Effects of Cutting Date and Bedsoil on Root and Shoot Growth in Autumn Cutting of Sedum sarmentosum (돌나물의 가을 삽목번식에 미치는 삽목용토 및 시기의 영향)

  • Ahn, Jeong-Ho;Choe, Seong-Sig;Bae, Jong-Hyang;Lee, Seung-Yeob
    • Journal of Bio-Environment Control
    • /
    • v.16 no.2
    • /
    • pp.146-150
    • /
    • 2007
  • For autumn cutting of Sedum sarmentosum, the influences of bedsoil and cutting date were investigated. Among six kinds of bedsoils mixed upland soil, carbonized rice and sand, the mixture with upland soil and sand (1:1 and 2:1, v/v) showed excellent root and shoot growth. The mixtures with upland soil and carbonized rice were lower rooting than the mixture with upland soil and sand. In field condition, autumn cutting was conducted with $10{\times}5cm$ space using the mixture with upland soil and sand (2:1, v/v) at intervals of 10 days from September 1 to October 10. Both root and shoot growth were significantly decreased by delayed date. In cutting from early to middle September, root and shoot growth, and number of rosette before wintering were desirable for shoot production next spring. The safety date to autumn cutting before wintering was on September 20 in field condition. If autumn cutting is late than September 20, the number of scion has increased 25-30% to secure a full rosette before wintering. The results could provide the beneficial information for cutting propagation of S. sarmentosum under field condition in autumn.

Effects of the Mixing Ratio of the Different Substrates and the Concentration of Fertigation in Nutrient Solution on the Growth of Tomato Plug Seedlings (배지의 혼합비율과 관비 양액 농도가 토마토 플러그묘의 생장에 미치는 영향)

  • Kim, Hong-Gi;Cho, Ja-Yong;Yu, Sung-Oh;Yang, Seung-Yul;Kang, Jong-Gu;Heo, Buk-Gu
    • Journal of Bio-Environment Control
    • /
    • v.16 no.2
    • /
    • pp.108-114
    • /
    • 2007
  • This study was conducted to clarify the effects of the different mixing ratios of substrate mixtures based on peat moss and the concentration of nutrient solution on the growth of tomato (Lycopersicon esculentum Mill.) seedlings. Substrates such as peat moss, rice hull, carbonized rice hull, decomposed sawdust, perlite and granular rock wool were mixed and used. The concentration of nutrient solution were adjusted to EC $0.5{\sim}1.5mS/cm$. The volumetric moisture contents became higher as peat moss mixed were much more. Total porosities in all substrate mixtures were over 80%, and pH in substrate mixtures became lower as the volume of peat moss mixed higher. Mixing ratios of substrates suitable for the production of tomato seedlings with the higher quality were peat moss:rice hull:carbonized rice hull:decomposed sawdust:perlite=25:10:25:20:20(v/v). The plant growth was not significant among the different substrate mixtures. However, plant growth such as plant height, leaf area, and total dry weight became significantly increased as EC increasing.

Changes of Adsorption Properties of Woody Charcoals Prepared by Different Carbonizing Temperature (탄화온도 차이에 의한 목질탄화물의 흡착성 변화)

  • Jo, Tae-Su;Ahn, Byoung-Jun;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.3 s.131
    • /
    • pp.45-52
    • /
    • 2005
  • This research was performed to evaluate adsorption behavior of woody charcoals obtained from wood powder, fiber and bark of spruce (Abies sibirica Ledeb). The wood materials were carbonized at various temperatures for 1 hour using experimental rotary kiln without any inert gas. The adsorption capacity of iodine and toluene, specific surface area and removal efficiency of acetic acid and ammonia gas of those charcoals were measured. The higher was the temperature for carbonization, the lower yields of charcoals were. Ash content of bark charcoal was higher than that of wood powder charcoal or fiber charcoal. Elemental analysis of woody charcoal revealed that the content of carbon was gradually lincreased as carbonization temperature was higher. When carbonization temperature was higher, adsorption capacity of woody charcoals for iodine was much improved. Wood powder charcoal and fiber charcoal were more effective for iodine adsorption rather than bark charcoal. Capacity of toluene adsorption was the highest in the charcoal of $600^{\circ}C$. Charcoals produced at high temperature efficiently removed acetic acid gas, while charcoals carbonized at low temperature such as $400^{\circ}C$ were proper to remove ammonia gas. This difference may be explained that the acidity of charcoals depends on the carbonization temperature: charcoals of low temperature indicate acidic property, while those of high temperature turned to alkaline.

A Study on Pyrolysis of Cellulosic Organic Solid Wastes (셀룰로오스질 유기고형폐물의 열분해에 관한 연구)

  • Park Nae Joung
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.293-303
    • /
    • 1977
  • Cellulosic organic solid wastes such as bark and sawdust, and filter papers as a pure cellulose were pyrolyzed at $300^{\circ}C$ under nitrogen current and mixed current of nitrogen and air. Amounts of condensates collected in air, water, and dry ice-acetone cooling traps, noncondensable gases, and carbonized residues were surveyed. The components of volatile liquids condensed in dry ice-acetone trap were separated by means of gas chromatograph and identified by retention times and syringe reactions. Pyrolysis under nitrogen current produced 13.4∼29.6${\%}$ of tar, 0.01∼0.12${\%}$ of aqueous liquids, 0.24∼1.43${\%}$ of volatile liquids, 9.84∼42.41${\%}$ of noncondensable gases, and 44.0∼65.81${\%}$ of carbonized residues. Pyrolysis under mixed current decreased tar and condensable liquids, but increased noncondensable gases.Volatile liquids collected under nitrogen current separated into the same 19 components by Porapak Q column regardless of the materials and only difference among materials was relative amounts of components. Volatile liquids collected under mixed current separated into six components and mainly lower molecular weight compounds such as methanol and formaldehyde were produced. According to the retention times and syringe reactions, methanol, formaldehyde, acetone, acetaldehyde, acetic acid, and three other compounds presumably containing hydroxyl group in the molecular structure were identified out of 19 compounds.

  • PDF