• Title/Summary/Keyword: carbonate reaction

Search Result 395, Processing Time 0.03 seconds

Effect of Al Precursor Addition Time on Catalytic Characteristic of Cu/ZnO/Al2O3 Catalyst for Water Gas Shift Reaction (Water Gas Shift 반응을 위한 Cu/ZnO/Al2O3 촉매에서 Al 전구체 투입시간에 따른 촉매 특성 연구)

  • BAEK, JEONG HUN;JEONG, JEONG MIN;PARK, JI HYE;YI, KWANG BOK;RHEE, YOUNG WOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.423-430
    • /
    • 2015
  • $Cu/ZnO/Al_2O_3$ catalysts for water gas shift (WGS) reaction were synthesized by co-precipitation method with the fixed molar ratio of Cu/Zn/Al precursors as 45/45/10. Copper and zinc precursor were added into sodium carbonate solution for precipitation and aged for 24h. During the aging period, aluminum precursor was added into the aging solution with different time gap from the precipitation starting point: 6h, 12h, and 18h. The resulting catalysts were characterized with SEM, XRD, BET surface measurement, $N_2O$ chemisorption, TPR, and $NH_3$-TPD analysis. The catalytic activity tests were carried out at a GHSV of $27,986h^{-1}$ and a temperature range of 200 to $400^{\circ}C$. The catalyst morphology and crystalline structures were not affected by aluminum precursor addition time. The Cu dispersion degree, surface area, and pore diameter depended on the aging time of Cu-Zn precipitate without the presence of $Al_2O_3$ precursor. Also, the interaction between the active substance and $Al_2O_3$ became more stronger as aging duration, with Al precursor presented in the solution, increased. Therefore, it was confirmed that aluminum precursor addition time affected the catalytic characteristics and their catalytic activities.

The Effect of Supercritical Carbonation on Quality Improvement of Recycled Fine Aggregate (초임계 탄산화 반응이 순환잔골재의 품질개선에 미치는 영향)

  • Heo, Seong-Uk;Kim, Ji-Hyun;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • The objective of this work is to prove a possibility of void f illing through a carbonation f or the purpose of improving the quality of recycled aggregate. Carbonation can permanently immobilize CO2, which is a greenhouse gas, and thus provides additional benefit on environment. In this work, recycled fine aggregate was reacted using gaseous CO2 and supercritical CO2(scCO2) in a closed chamber, and the changes in physical properties of the recycled f ine aggregate bef ore and af ter carbonation were analyzed using the apparent density, skeletal density, pH, and FE-SEM measurements. Thereafter, a mortar specimen was prepared and a compressive strength was measured. According to the experimental results, it was found that the increase in the apparent density and the true density was higher by the reaction with scCO2, which was conducted at high temperature and high pressure compared to the reaction with gaseous CO2. In addition, the pH of the eluted water was found to have a larger initial decrease than that observed with samples from reaction by gaseous CO2. The shape and amount of calcium carbonate crystals were also found to be larger than that from gaseous CO2. The increase in compressive strength was the largest when using recycled fine aggregate reacted with scCO2. It was clear that quality improvement of recycled fine aggregate was higher with scCO2 than with gaseous CO2.

Research on the Production of CO2 Absorbent Using Railway Tie Concrete Waste (콘크리트 철도 침목 폐기물을 활용한 CO2 포집제 제조 연구)

  • Gyubin Lee;Jae-Young Lee;Hyung-Jun Jang;Sangwon Ko;Hye-Jin Hong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.260-266
    • /
    • 2023
  • In recent years, excessive emissions of carbon dioxide(CO2) have become the cause of global climate change. Consequently, there has been significant research activity aimed at both removing and utilizing CO2. This study assesses the potential utilization of railway tie concrete waste, generated from railway infrastructure, as a CO2 absorption material and investigates the physicochemical properties before and after CO2 absorption to understand the CO2 removal mechanisms. Railway tie concrete waste primarily consists of Si(26.60 %) and contains 9.82 % of Ca. Compared to samples of Cement and Normal concrete waste, it demonstrated superior potential for use as a CO2 absorption material, with approximately 98 % of the Ca content participating in CO2 absorption reactions. Through Thermogravimetric Analysis(TGA) and X-ray Diffraction(XRD) analysis, it was confirmed that the carbonate reaction, where the Ca in railway tie concrete waste converts into CaCO3 through reaction with CO2 gas, is the primary mechanism for CO2 removal. Furthermore, Scanning Electron Microscopy(SEM) analysis revealed the formation of numerous CaCO3 particles with sizes less than 0.1 ㎛ after the CO2 absorption reaction. This transformation of large internal voids in the CO2 absorption material into mesopores resulted in an increase in the specific surface area of the material.

Characteristics of Direct Aqueous Carbonation Reaction Using Incinerated Ash and Industrial By-Products (소각재 및 산업부산물을 이용한 직접 수성탄산화 반응 특성)

  • Dong Kyoo Park;Seungman Han;Changsik Choi
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.113-122
    • /
    • 2024
  • In order to better understand carbon dioxide recycling, the carbon dioxide capture characteristics of six different alkaline industrial by-products, including incineration ash, desulfurized gypsum, low-grade quicklime, and steelmaking slag were investigated using a laboratory-scale direct aqueous carbonation reactor. In addition to the dissolution characteristics of each sample, the main reaction structure was confirmed through thermogravimetric analysis before and after the reaction, and the reactive CaO content was also defined through thermogravimetric analysis. The carbon dioxide capture capacity and efficiency of quicklime were determined to be 473 g/kg and 86.9%, respectively, and desulfurized gypsum and incineration ash were also evaluated to be relatively high at 51.1 to 131.7 g/kg and 51.2 to 87.7%, respectively. On the other hand, the capture efficiency of steelmaking slag was found to be less than 10% due to the influence of the production and post-cooling conditions. Therefore, in order to apply the carbonation process to steelmaking slag, it is necessary to optimize the slag production conditions. Through this study, it was confirmed that the carbon dioxide capture characteristics of incineration ash, quicklime, and desulfurized gypsum are at levels suitable for carbonation processes. Furthermore, this study was able to secure basic data for resource development technology that utilize carbon dioxide conversion to produce calcium carbonate for construction materials.

Distribution of Cadminum Fractions in Paddy Soils and Their Relation to Cadmium Content in Brown Rice (답토양중(畓土壤中) Cadmium의 형태별(形態別) 분포(分布)와 현미중(玄米中) Cadmium 함량(含量)과의 관계연구(関係硏究))

  • Lim, Sun-Uk;Kim, Sun-Kwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.1
    • /
    • pp.28-35
    • /
    • 1983
  • The object of this study was to investigate the distribution of Cd fractions in paddy soils in relation to some soil characteristics and to find out the relationships between soil Cd fractions and Cd content in brown rice. Thirty six soils and rice samples were collected from the paddy field adjacent to zinc mining sites at harvest time in 1981. Total Cd content of brown rice samples was analyzed. A sequential extraction procedure was used to fractionate Cd in soils into the designated forms of exchangeable, adsorbed, organically bonded, carbonate, sulfide, and residual Cd. The results obtained were as follows: 1. The distribution of Cd fractions in soil showed a wide difference depending on soil properties. As an average value it was observed that organically bonded Cd amounted 43.7%; residual Cd, 6.5%; and other fractions, 10-15%. 2. With higher soil pH, organically bonded and carbonate Cd fraction tended to be higher but exchangeable fraction lower. Other forms of Cd showed no difference with soil reaction. 3. Organically bonded fraction was positively correlated with soil organic matter content, while others except adsorbed fraction showed an adverse tendency. 4. The relation of fraction distribution to soil C E C was similar to the case of organic matter. 5. Cadmium content in brown rice showed significant possitive correlation with organically bonded Cd content (r = 0.655) and carbonate, Cd content of soil (r = 0.328) but there was no significant correlation with contents of other forms.

  • PDF

Characteristics of Groundwater Quality in Bedrock and Tailing Dumps at the Abandoned Dalcheon Mine Area (달천 폐광산 지역에서 광미적재지와 기반암 지하수의 수질특성 연구)

  • Yang, Sung-Il;Kang, Dong-Hwan;Kim, Tae-Yeong;Chung, Sang-Yong;Kim, Min-Chul
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.47-56
    • /
    • 2008
  • pH and Eh were measured at 25 points in the abandoned Dalcheon mine. And, major ion components $(Na^+,\;K^+,\;Ca^{2+},\;Mg^{2+},\;Cl^-,\;SO_4^{2-},\;CO_3^{2-},\;HCO_3^-)$ were analyzed through groundwater sampling at 41 points. pH and Eh were measured the highest concentration in serpentinite area. And, pH was between weak alkaline and intermediate values in study area. Groundwater in study area was dominated oxidation-reduction environment caused by reaction with carbonate rock. Because sulfur components contained in carbonate, serpentinite, arsenopyrite and pyrite was dissolved by groundwater, $SO_4^{2-}$ component was high in study area. And $Ca^{2+},\;Mg^{2+}$ of cations were high. Correlation coefficients of ion components in tailing dumps were 0.95 between $Ca^{2+}\;and\;SO_4^{2-}$, 0.86 between $Ca^{2+}\;and\;Mg^{2+}$, 0.85 between $Mg^{2+}\;and\;SO_4^{2-}$. Correlation coefficients of ion components in bedrock were 0.86 between $Mg^{2+}\;and\;SO_4^{2-}$, 0.68 between $Ca^{2+}\;and\;SO_4^{2-}$. Concentration range of $Ca^{2+}$ in tailing dumps was $6.85{\sim}323.58mg/L,\;and\;3.18{\sim}207.20mg/L$ in bedrock. Concentration range of $SO_4^{2-}$ in tailing dumps was $21.54{\sim}1673.17mg/L,\;and\;2.04{\sim}1024.64mg/L$ in bedrock. By the result of Piper diagram analysis with aquifer material, groundwater in tailing dumps was $Ca-SO_4$ type. Groundwater quality types with bedrock material were Mg-$SO_4$ and Mg-$HCO_3$ types in serpentinite area, Ca-$HCO_3$ type in carbonate area, Na-K and $CO_3+HCO_3$ types in hornfels, respectively. As a result of this study, groundwater in tailing dumps were dissolved $Ca^{2+},\;Mg^{2+}\;and\;SO_4^{2-}$ components with high concentration. Also, these ion components were transported into bedrock aquifer.

CO2 Sequestration and Utilization of Calcium-extracted Slag Using Air-cooled Blast Furnace Slag and Convert Slag (괴재 및 전로슬래그를 이용한 CO2 저감 및 칼슘 추출 후 슬래그 활용)

  • Yoo, Yeongsuk;Choi, Hongbeom;Bang, Jun-Hwan;Chae, Soochun;Kim, Ji-Whan;Kim, Jin-Man;Lee, Seung-Woo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.101-111
    • /
    • 2017
  • Mineral carbonation is a technology in which carbonates are synthesized from minerals including serpentine and olivine, and industrial wastes such as slag and cement, of which all contain calcium or magnesium when reacted with carbon dioxide. This study aims to develop the mineral carbonation technology for commercialization, which can reduce environmental burden and process cost through the reduction of carbon dioxide using steel slag and the slag reuse after calcium extraction. Calcium extraction was conducted using NH4Cl solution for air-cooled slag and convert slag, and ${\geq}98%$ purity calcium carbonate was synthesized by reaction with calcium-extracted solution and carbon dioxide. And we conducted experimentally to minimize the quantity of by-product, the slag residue after calcium extraction, which has occupied large amount of weight ratio (about 80-90%) at the point of mineral carbonation process using slag. The slag residue was used to replace silica sand in the manufacture of cement panel, and physical properties including compressive strength and flexible strength of panel using the slag residue and normal cement panel, respectively, were analyzed. The calcium concentration in extraction solution was analyzed by inductively coupled plasma optical emission spectrometer (ICP-OES). Field-emission scanning electron microscope (FE-SEM) was also used to identify the surface morphology of calcium carbonate, and XRD was used to analyze the crystallinity and the quantitative analysis of calcium carbonate. In addition, the cement panel evaluation was carried out according to KS L ISO 679, and the compressive strength and flexural strength of the panels were measured.

Optimization of Rod-shaped γ-LiAlO2 Particle Reinforced MCFC Matrices by Aqueous Tape Casting (수계 테이프 케스팅 법에 의한 봉상 γ-LiAlO2 입자 강화 MCFC 매트릭스 제조 공정의 최적화)

  • Choi, Hyun-Jong;Shin, Mi-Young;Hyun, Sang-Hoon;Lim, Hee-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.282-287
    • /
    • 2009
  • Rod-shaped particle reinforced $LiAlO_2$ matrices for MCFC were fabricated by an aqueous tape-casting technique. The hydrolysis reaction and agglomeration of $\gamma-LiAlO_2$ particles in aqueous slurries were inhibited by additions of $LiOH{\cdot}H_2O$ and glycerin to the aqueous $\gamma-LiAlO_2$ slurry. The tape-casting, performed using the aqueous slurry containing protein albumin, was fast and led to an effective drying at casting temperature range of $60{\sim}65^{\circ}C$. The strength of the particle reinforced matrix was improved about 4 times compared to that of matrix without reinforcement. Pore size distribution ($0.1{\sim}0.4{\mu}m$) and porosity ($50{\sim}60%$) of the reinforced matrices were determined to be appropriate for the MCFC matrix. The aqueous tape casting process is not only environmental-friendly but also efficient for fabricating MCFC matrices compared to non-aqueous tape casting.

Study on optimization of liquid carbonation pilot plant (system) using sludge water of ready-mixed concrete (레미콘회수수를 이용한 액상탄산화 Pilot plant(System) 최적화에 관한 연구)

  • Kim, Jae Gang;Shin, Jae Ran;Kim, Hae Gi;Kang, Ho Jong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.239-246
    • /
    • 2016
  • In this study, recycling sludge water of Ready-mixed concrete, and was carried out to optimize the system for recycling of the $CO_2$. The most important process in the liquid phase using a carbonation reaction can be recovered ready-mixed concrete is a process for the $Ca^{2+}$ release. $Ca^{2+}$ concentration of the experiment relative to the pH being lowered by the acidic substance during elution was performed. $CO_2$ was trapped in the MEA solution using a generator flue gas. In ready-mixed concrete can be synthesized $CaCO_3$ up to 11kg/1ton. The resulting $CaCO_3$ analysis results show that it is possible to use paper industry.

Geochemical Reaction Processes and Controls on the Coal Mine Drainage using Pilot-scale Inclined Clarifiers (Pilot 규모의 경사판 침전지 시험을 통한 국내 석탄광산배수내 부유물질의 지구화학적 반응특성 및 조정영향)

  • Lee, SangHoon;Oh, Minah;Lee, Jai-Young;Kwon, Eunhye;Kim, Doyoung;Kim, DukMin
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.73-80
    • /
    • 2013
  • Fine suspended solids from coal mine drainage were treated in the treating plant, using two different pilot-scale inclined clarifiers: radial and lamella types. Suspended solids in the mine drainage were monitored along with other geochemical factors, and metal contents. Fe and Mn are the main chemical components in the drainage, which exist predominantly as total metal forms, whereas dissolved portion is negligible. The raw mine drainage is subject to physical and chemical treatment using $CaCO_3$ and NaOH, therefore the suspended solids are thought to be composed of Fe and Mn precipitates, possibly $Fe(OH)_3$, along with carbonate precipitates. The elemental composition of precipitates are confirmed by SEM-EDS analysis. As nearly all the dissolved ions were precipitated in the primary process by $CaCO_3$, no further aeration or prolonged oxygenation are of necessity in this plant. Adoption of inclined clarifier proved to be effective in treating fine suspended solids in the current plant. Successful application of the inclined clarifier will also be beneficial to improve the current treating process by excluding the current application of chemical agent in the first stage. The final effluents from the pilot plant meet the national standards and the low dissolved Fe and Mn contents are expected not to cause secondary precipitation after discharge.