DOI QR코드

DOI QR Code

Characteristics of Direct Aqueous Carbonation Reaction Using Incinerated Ash and Industrial By-Products

소각재 및 산업부산물을 이용한 직접 수성탄산화 반응 특성

  • Received : 2024.03.14
  • Accepted : 2024.04.05
  • Published : 2024.06.30

Abstract

In order to better understand carbon dioxide recycling, the carbon dioxide capture characteristics of six different alkaline industrial by-products, including incineration ash, desulfurized gypsum, low-grade quicklime, and steelmaking slag were investigated using a laboratory-scale direct aqueous carbonation reactor. In addition to the dissolution characteristics of each sample, the main reaction structure was confirmed through thermogravimetric analysis before and after the reaction, and the reactive CaO content was also defined through thermogravimetric analysis. The carbon dioxide capture capacity and efficiency of quicklime were determined to be 473 g/kg and 86.9%, respectively, and desulfurized gypsum and incineration ash were also evaluated to be relatively high at 51.1 to 131.7 g/kg and 51.2 to 87.7%, respectively. On the other hand, the capture efficiency of steelmaking slag was found to be less than 10% due to the influence of the production and post-cooling conditions. Therefore, in order to apply the carbonation process to steelmaking slag, it is necessary to optimize the slag production conditions. Through this study, it was confirmed that the carbon dioxide capture characteristics of incineration ash, quicklime, and desulfurized gypsum are at levels suitable for carbonation processes. Furthermore, this study was able to secure basic data for resource development technology that utilize carbon dioxide conversion to produce calcium carbonate for construction materials.

본 연구에서는 이산화탄소 자원화의 일환으로 실험실 규모의 직접 수성탄산화 반응기를 이용하여 소각재와 더불어 탈황 석고, 저급 생석회 및 제강슬래그 등 다양한 알칼리성 산업부산물 6종을 대상으로 이산화탄소 포집 특성을 고찰하였다. 각 시료별 용해 특성과 더불어 반응 전, 후 열중량 분석을 통해 주요 반응 구조를 확인할 수 있었고, 이를 통해 반응성 CaO 함량을 정의하였다. 실험 결과, 생석회의 포집 용량 및 효율은 각각 473 g/kg, 86.9%로 결정할 수 있었으며, 탈황석고 및 소각재 역시 각각 51.1 ~ 131.7 g/kg, 51.2 ~ 87.7% 수준으로 비교적 높게 평가할 수 있다. 이에 반해 제강슬래그의 경우 생성 및 후처리 조건의 영향으로 포집 효율은 10% 미만으로 나타났으며 탄산화 공정 적용을 위해 생산 조건에 따른 영향에 대한 최적화가 요구된다. 본 연구를 통해 소각재를 비롯하여 생석회 및 탈황석고의 이산화탄소 포집특성이 이산화탄소 포집 공정 적용에 적절한 수준으로 판단할 수 있었으며, 이산화탄소전환 탄산칼슘의 건설소재 등 자원화 기술 개발의 기초자료를 확보할 수 있었다.

Keywords

Acknowledgement

본 연구는 2021년도 중소벤처기업부의 기술개발사업 지원에 의한 연구임 [P0016558].

References

  1. Roy, P. S., Yoo, Y. D., Kim, S., and Park, C. S. "Techno-Economic Analysis of Power To Gas (P2G) Process for the Development of Optimum Business Model: Part 2 Methane to Electricity Production Pathway," Clean Technol., 29(1), 53-58 (2023).
  2. Choi, J., Chang, T. S., and Kim, B.-S., "Recent Development of Carbon Dioxide Conversion Technology," Clean Technol., 18(3), 229-249 (2012). https://doi.org/10.7464/ksct.2012.18.3.229
  3. Kim, J.-H., Park, D.-K., Kim, J.-H., Kim, H.-J., Kim, H.-S., Kang, S.-H., and Ryu, J.-H., "Trend of CO2 Free H2 Production Technology for Carbon Neutrality," J. Energy Climate Change, 16(2), 103-127 (2021).
  4. Jo, H. and Kim, J., "Thermal Strategies of CCUS : CO2 Conversion towards Valuable Products," KIC News, 26(6), 3-23 (2023).
  5. Yi, S., Choi, C., Cho, S., Seo, M., Ji, G., Kim, I., Choi, S., Chang, W. S., and Lim, S., "LCA for Manufacturing of Construction Materials using CO2 Mineral Carbonation Technology," J. Korea Soc. Waste Manag., 35(5), 464-470 (2018). https://doi.org/10.9786/kswm.2018.35.5.464
  6. Kim, B.-H., Kang, P.-S., and Yoo, S.-K., "Characteristics of Capture for High Concentration CO2 at Carbonation of Alkaline Sorbent," J. Korea Soc. Waste Manag., 33(3), 257-264 (2016). https://doi.org/10.9786/kswm.2016.33.3.257
  7. Zhao, Q., Chu, X., Mei, X., Meng, Q., Li, J., Liu, C., Saxen, H., and Zevenhoven, R., "Co-Treatment of Waste from Steelmaking Processes: Steel Slag-Based Carbon Capture and Storage by Mineralization," Front. Chem., 8, 571504 (2020).
  8. Song, H.-Y., Seo, J.-B., Kang, S.-K., Kim, I.-D., Choi, B.-W., and Oh, K.-J., "CO2 Fixation by Magnesium Hydroxide from FerroNickel Slag," Clean Technol., 20(1), 42-50
  9. Choi, Y., Choi, C., Seo, M., Kim, S., Chang, W. S., and Jo, Y. M., "Aqueous Mineralization Process of Carbon Dioxide from Flue Gas using Aspen Plus and Exergy Analysis," J. Korean Soc. Atmos. Environ., 37(1), 45-54 (2021). https://doi.org/10.5572/KOSAE.2021.37.1.045
  10. Ji, L. and Yu, H., "Carbon Dioxide Sequestration by Direct Mineralization of Fly Ash," In Carbon Dioxide Sequestration in Cementitious Construction Materials, Woodhead Publishing, Cambridge 13-37 (2018).
  11. Kim, J.-M., Cho, S.-H., Oh, S.-Y., and Kwak, E.-G., "Properties of Rapidly-Cooled Steel Slag by Atomizing Process," Magazine Korea Concrete Institute, 19(6), 39-45 (2007). https://doi.org/10.4334/JKCI.2007.19.1.039
  12. Mahon, D., Claudio, G., and Eames, P., "An Experimental Study of the Decomposition and Carbonation of Magnesium Carbonate for Medium Temperature Thermochemical Energy Storage," Energies, 14(5), 1316 (2021).
  13. Victor, P., Kim, S., Yoo, J., Lee, S., Rhim, Y., Lim, J., Kim, S., Chun, D., Choi, H., and Rhee, Y., "Deactivation Behavior of K2CO3 Catalyst in the Steam Gasification of Kideco Coal," Trans. Korean Hydrogen New Energy Soc., 27(5), 517-525 (2016). https://doi.org/10.7316/KHNES.2016.27.5.517
  14. Simoni, M., Hanein, T., Woo, C. L., Nyberg, M., Tyrer, M., Provis, J. L., and Kinoshita, H., "Synthesis of Ca(OH)2 and Na2CO3 through Anion Exchange between CaCO3 and NaOH: Effect of Reaction Temperature," RSC Adv., 12(49), 32070-32081 (2022). https://doi.org/10.1039/D2RA05827H
  15. Kim, D. and Kim, M., "Study on Carbon Dioxide Storage through Mineral Carbonation using Sea Water and Paper Sludge Ash," J. Korean Soc. Mar. Environ., 19(1), 18-24 (2016). https://doi.org/10.7846/JKOSMEE.2016.19.1.18
  16. Nam, S.-Y., Um, N.-I., and Ahn, J.-W., "Quantitative Evaluation of CO2 Sequestration in Ca-rich Waste Mineral for Accelerated Carbonation," J. Korean Ceram. Soc., 51(2), 64 (2014).