References
- Mikkelsen, M., Jorgensen, M., and Krebs, F. C., "The teraton challenge. A review of fixation and transformation of carbon dioxide", Energy & Environmental Science, Vol. 3, 2010, pp. 43-81. https://doi.org/10.1039/B912904A
- Smith, R. J., Loganathan, M., and Shantha, M. S., "A Review of the Water Gas Shift Reaction Kinetics", International Journal of Chemical Reactor Engineering, Vol. 8, 2010, Review R4.
-
Stone, F. S., Waller, D., "Cu-ZnO and
$Cu-ZnO/Al_2O_3$ catalysts for the reverse water-gas shift reaction. The effect of the Cu/Zn ratio on precursor characteristics and on the activity of the derived catalysts", Topics in catalysis, Vol. 22, No. 3-4, 2003, pp. 305-318. https://doi.org/10.1023/A:1023592407825 - Gines, M. J. L., Amadeo, N., Laborde, M., and Apesteguia, C. R., "Activity and structure- sensitivity of the water-gas shift reaction over Cu Zn Al mixed oxide catalysts", Applied Catalysis A: General, Vol. 131, No. 2, 1995, pp. 283-296. https://doi.org/10.1016/0926-860X(95)00146-8
-
Kowalik, P., Prochniak, W., "The effect of calcination temperature on properties and activity of
$Cu/ZnO/Al_2O_3$ catalysts", Annales UMCS, Chemistry, Vol. 65, 2010, pp. 79-87. -
Kowalik, P., Konkol, M., Antoniak, K., Prochniak, W., and Wiercioch, P., "The effect of the precursor ageing on properties of the
$Cu/ZnO/Al_2O_3$ catalyst for low temperature water-gas shift (LT-WGS)", Journal of Molecular Catalysis A: Chemical, Vol. 392, 2014, pp. 127-133. https://doi.org/10.1016/j.molcata.2014.05.003 -
Figueiredo, R. T., Andrade, H. M. C., and Fierro, J. L., "Influence of the preparation methods and redox properties of
$Cu/ZnO/Al_2O_3$ catalysts for the water gas shift reaction", Journal of Molecular Catalysis A: Chemical , Vol. 318, No. 1, 2010, pp. 15-20. https://doi.org/10.1016/j.molcata.2009.10.028 - Park, N. K., and Lee, T. J., "Control of surface area and activity with changing precipitation rate in preparation of Cu-Zn based catalysts for dimethyl ether direct synthesis", Korean Journal of Chemical Engineering, Vol. 28, No. 10, 2011, pp. 2076-2080. https://doi.org/10.1007/s11814-011-0061-1
- Kuhl, S., Tarasov, A., Zander, S., Kasatkin, I., and Behrens, M., "Cu‐Based Catalyst Resulting from a Cu, Zn, Al Hydrotalcite‐Like Compound: A Microstructural, Thermoanalytical, and In Situ XAS Study", Chemistry-A European Journal, Vol. 20, No. 13, 2014, pp. 3782-3792. https://doi.org/10.1002/chem.201302599
-
Kasatkin, I., Kurr, P., Kniep, B., Trunschke, A., and Schlögl, R., "Role of lattice strain and defects in copper particles on the activity of
$Cu/ZnO/Al_2O_3$ catalysts for methanol synthesis", Angewandte Chemie, Vol. 119, No. 38, 2007, pp. 7465-7468. https://doi.org/10.1002/ange.200702600 -
Atake, I., Nishida, K., Li, D., Shishido, T., Oumi, Y., Sano, T., and Takehira, K., "Catalytic behavior of ternary
$Cu/ZnO/Al_2O_3$ systems prepared by homogeneous precipitation in water-gas shift reaction", Journal of Molecular Catalysis A: Chemical, Vol. 275, No. 1, 2007, pp. 130-138. https://doi.org/10.1016/j.molcata.2007.05.040 -
Lindstrom, B., Pettersson, L. J., and Menon, P. G., "Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on
$\gamma$ -alumina for methanol reforming for fuel cell vehicles", Applied catalysis A: general, Vol. 234, No. 1, 2002, pp. 111-125. https://doi.org/10.1016/S0926-860X(02)00202-8 -
Lima, A. A. G., Nele, M., Moreno, E. L., and Andrade, H. M. C., "Composition effects on the activity of
$Cu-ZnO-Al_2O_3$ based catalysts for the water gas shift reaction: a statistical approach", Applied Catalysis A: General, Vol. 171, No. 1, 1998, pp. 31-43. https://doi.org/10.1016/S0926-860X(98)00072-6 -
Jeong, J. W., Ahn, C. I., Lee, D. H., Um, S. H., and Bae, J. W., "Effects of Cu-ZnO content on reaction rate for direct synthesis of DME from syngas with bifunctional
$Cu-ZnO/{\gamma}-Al_2O_3$ catalyst", Catalysis letters, Vol. 143, No. 7, 2013, pp. 666-672. https://doi.org/10.1007/s10562-013-1022-6 - Takahashi, R., Sato, S., Sodesawa, T., and Nishida, H., "Effect of pore size on the liquid-phase pore diffusion of nickel nitrate", Physical Chemistry Chemical Physics, Vol. 4, 2002, pp. 3800-3805. https://doi.org/10.1039/b202024f