• Title/Summary/Keyword: carbonate complexes

Search Result 29, Processing Time 0.024 seconds

Synthesis Catalytic Application of Several$d^8Transition Metal Diphosphine Complexes, (MCl_2PP) (M = Ni^{2+}, Pd^{2+}, Pt^{2+}, Au^{3+} ; PP = diphosphines)$ (몇가지 $d^8$ 전이금속-디포스핀 착물 ($MCl_2PP$)의 합성과 촉매적 응용 (M = $Ni^{2+}$, $Pd^{2+}$, $Pt^{2+}$, $Au^{3+}$ ; PP = diphosphines))

  • Park Yu-Chul;Kim Kyung-Chae;Cho Young-Jae
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.685-691
    • /
    • 1992
  • The $d^8$-transition metal complexes containing diphosphine, $MCl_2PP$ were prepared by using $K_nMCl_m$ as starting materials, wherein M were Ni(II), Pd(II), Pt(II) and Au(III) and PP were bis(diphenylphosphino)methane(dppm), bis(diphenylphosphino)ethane(dppe), bis(diphenylphosphino)propane (dppp) and bis(diphenylphosphino)ethylene(dppety). The complexes were characterized by the spectral property $(^H-NMR$, $^{31}P-NMR$ and UV-Visible spectra) together with elemental analysis. The complexes were tested for the catalytic activity on the formation reactions of 3(2H)-furanone and cyclic carbonate. The only Ni(II)- and Pd(II)-diphosphine complexes displayed a good catalytic effects in the production of 3(2H)-furanone from 2-methyl-3-butyn-2-ol [reaction (1)]. But all the diphosphine complexes as catalyst were almost inactive towards cyclic carbonate production preaction [reaction (2)].

  • PDF

EFFECT OF CARBONATE ON THE SOLUBILITY OF NEPTUNIUM IN NATURAL GRANITIC GROUNDWATER

  • Kim, B.Y.;Oh, J.Y.;Baik, M.H.;Yun, J.I.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.552-561
    • /
    • 2010
  • This study investigates the solubility of neptunium (Np) in the deep natural groundwater of the Korea Atomic Energy Research Institute Underground Research Tunnel (KURT). According to a Pourbaix diagram (pH-$E_h$ diagram) that was calculated using the geochemical modeling program PHREEQC 2.0, the redox potential and the carbonate ion concentration both control the solubility of neptunium. The carbonate effect becomes pronounced when the total carbonate concentration is higher than $1.5\;{\times}\;10^{-2}$ M at $E_h$ = -200 mV and the pH value is 10. Given the assumption that the solubility-limiting stable solid phase is $Np(OH)_4(am)$ under the reducing condition relevant to KURT, the soluble neptunium concentrations were in the range of $1\;{\times}\;10^{-9}$ M to $3\;{\times}\;10^{-9}$ M under natural groundwater conditions. However, the solubility of neptunium, which was calculated with the formation constants of neptunium complexes selected in an OECD-NEA TDB review, strongly deviates from the value measured in natural groundwater. Thus, it is highly recommended that a prediction of neptunium solubility is based on the formation constants of ternary Np(IV) hydroxo-carbonato complexes, even though the presence of those complexes is deficient in terms of the characterization of neptunium species. Based on a comparison of the measurements and calculations of geochemical modeling, the formation constants for the "upper limit" of the Np(IV) hydroxo-carbonato complexes, namely $Np(OH)_y(CO_3)_z^{4-y-2z}$, were appraised as follows: log $K^{\circ}_{122}\;=\;-3.0{\pm}0.5$ for $Np(OH)_2(CO_3)_2^{2-}$, log $K^{\circ}_{131}\;=\;-5.0{\pm}0.5$ for $Np(OH)_3(CO_3)^-$, and log $K^{\circ}_{141}\;=\;-6.0{\pm}0.5$ for $Np(OH)_4(CO_3)^{2-}$.

Nano Particle Coatings on α-alumina Powders by a Carbonate Precipitation (Carbonate 침전법을 이용한 α-알루미나의 나노파티클 코팅)

  • Lim, Jong-Min;Kim, Sang-Woo
    • Journal of Powder Materials
    • /
    • v.14 no.2 s.61
    • /
    • pp.145-149
    • /
    • 2007
  • Nanocrystalline transient aluminas (${\gamma}$-alumina) were coated on core particles (${\gamma}$-alumina) by a carbonate precipitation and thermal-assisted combustion, which is environmentally friend. The ammonium aluminum carbonate hydroxide (AACH) as a precursor for coating of transient aluminas was produced from precipitation reaction of ammonium aluminum sulfate and ammonium hydrogen carbonate. The crystalline size and morphology of the synthetic, AACH, were greatly dependent on pH and temperature. AACH with a size of 5 nm was coated on the core alumina particle at pH 9. whereas rod shape and large agglomerates were coated at pH 8 and 11, respectively. The AACH was tightly bonded coated on the core particle due to formation of surface complexes by the adsorption of carbonates, hydroxyl and ammonia groups on the surface of the core alumina powder. The synthetic precursor successfully converted to amorphous- and ${\gamma}$-alumina phase at low temperature through decomposition of surface complexes and thermal-assisted phase transformation.

Spectroscopic Characterization of Aqueous and Colloidal Am(III)-CO3 Complexes for Monitoring Species Evolution

  • Hee-Kyung Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.371-382
    • /
    • 2022
  • Carbonates are inorganic ligands that are abundant in natural groundwater. They strongly influence radionuclide mobility by forming strong complexes, thereby increasing solubility and reducing soil absorption rates. We characterized the spectroscopic properties of Am(III)-carbonate species using UV-Vis absorption and time-resolved laser-induced fluorescence spectroscopy. The deconvoluted absorption spectra of aqueous Am(CO3)2- and Am(CO3)33- species were identified at red-shifted positions with lower molar absorption coefficients compared to the absorption spectrum of aqua Am3+. The luminescence spectrum of Am(CO3)33- was red-shifted from 688 nm for Am3+ to 695 nm with enhanced intensity and an extended lifetime. Colloidal Am(III)-carbonate compounds exhibited absorption at approximately 506 nm but had non-luminescent properties. Slow formation of colloidal particles was monitored based on the absorption spectral changes over the sample aging time. The experimental results showed that the solubility of Am(III) in carbonate solutions was higher than the predicted values from the thermodynamic constants in OECD-NEA reviews. These results emphasize the importance of kinetic parameters as well as thermodynamic constants to predict radionuclide migration. The identified spectroscopic properties of Am(III)-carbonate species enable monitoring time-dependent species evolution in addition to determining the thermodynamics of Am(III) in carbonate systems.

An Experimental Study on the Sorption of U(VI) onto Granite

  • Min-Hoon Baik;Pil-Soo Hahn
    • Nuclear Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.445-454
    • /
    • 2002
  • The sorption of U(Vl) on a domestic granite is studied as a function of experimental conditions such as contact time, solution-solid ratio, ionic strength, and pH using a batch procedure. The distribution coefficients, $K_{d}$'s, of U(VI) are about 1-100mL/g depending on the experimental conditions. The sorption of U(VI) onto granite particles is greatly dependent upon the contact time, solution-solid ratio, and pH, but very little is dependent on the ionic strength. It is noticed that an U(VI)-carbonate ternary surface complex can be formed in the neutral range of pH. In the alkaline range of pH above 7, U(VI) sorption onto granite particles is greatly decreased due to the formation of anionic U(VI)-carbonate aqueous complexes.s.

Polymer-supported Zinc Tetrahalide Catalysts for the Coupling Reactions of CO2 and Epoxides

  • Lee, Bo-Ra;Ko, Nan-Hee;Ahn, Byoung-Sung;Cheong, Min-Serk;Kim, Hoon-Sik;Lee, Je-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2025-2028
    • /
    • 2007
  • Homogeneous zinc tetrahalide complexes, highly active catalysts for the coupling reactions of alkylene oxide and CO2 produce alkylene carbonates, were heterogenized due to their tendency to decompose produced alkylene carbonates during the distillation process. Heterogenization of homogeneous zinc tetrahalide complexes was achieved by polymerizing 1-alkyl-3-vinylimidazolium zinc tetrahalides. These polymerized zinc tetrahalide catalysts displayed similar activities to their corresponding monomeric analogues for the coupling reactions of carbon dioxide with ethylene oxide (EO) or propylene oxide (PO) to produce ethylene carbonate (EC) or propylene carbonate (PC). TGA studies showed that the polymer-supported zinc tetrahalide catalysts are thermally stable up to 320 oC. The catalyst recycle test showed that the supported catalysts could be reused over six times. After removal of the polymer-supported catalyst through a simple filtration, EC was able to be isolated without decomposition.

Ultrasonic-assisted dissolution of U3O8 in carbonate medium

  • Chenxi Hou;Mingjian He ;Haofan Fang;Meng Zhang;Yang Gao;Caishan Jiao;Hui He
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.63-70
    • /
    • 2023
  • Ultrasound-assisted dissolution of U3O8 powder in carbonate solution was explored to determine if and how ultrasound act during the dissolution. The variation of U3O8 solid particles and uranyl complexes under ultrasound treatment and magnetic stirring was observed in carbonate media. The results show that the use of ultrasound can increase the solubility and dissolution rate of U3O8 powder than that under magnetic stirring. The crush of U3O8 particles and the reduction of the activation energy (Ea, kJ/mol) of U3O8 dissolution reaction were observed, which both play an important role in the ultrasonic-assisted dissolution of U3O8 in carbonate-peroxide solution. Meanwhile, there is no observation of the ultrasound effect on the distribution of uranyl species and hydrolysis of uranyl complexes during the ultrasound treatment in carbonate-peroxide solution. Although the generation of ·OH radicals under ultrasound (22 ± 2 kHz) was observed, the oxidation of ·OH had little effect on the dissolution of U3O8 in the carbonate-peroxide solution system.

Carbonic Anhydrase Mimicry for Carbon Dioxide Fixation and Calcium Carbonate Mineralization (탄산탈수효소 모사를 이용한 이산화탄소 고정화 및 탄산칼슘 합성)

  • Sahoo, Prakash C.;Jang, Young Nam;Chae, Soo Chun;Lee, Seung Woo
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.201-208
    • /
    • 2013
  • Copper (II) and Nickel (II) mimic complexes of enzyme carbonic anhydrase were evaluated under ambient condition for carbon dioxide capture and conversion process. The synthesized complexes were characterized by ATR-FTIR and UV-DR spectroscopy. It was found that all the complexes have biomimetic activity towards $CO_2$ using para-nitrophenyl acetate (p-NPA) hydrolysis as the model reaction. Interestingly, the proper geometry obtained by the restricted orientation of tripodal N atoms in Cu (II) complex of 2,6-bis(2-benzimidazolyl) pyridine showed the highest activity (1.14 au) compared to others. The $CO_2$ bio-mineralization to $CaCO_3$ was carried out via in-vitro crystallization approach. Results indicate that the biomimetic complexes have a role in determining $CaCO_3$ morphology. The present observations establish a qualitative insight for the design of improved small-molecule catalysts for carbon capture.

Improvement of Mechanical and Electrical Properties of Poly(ethylene glycol) and Cyanoresin Based Polymer Electrolytes

  • Oh Kyung-Wha;Choi Ji-Hyoung;Kim Seong-Hun
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.89-94
    • /
    • 2006
  • Ionic conductivity and mechanical properties of a mixed polymer matrix consisting of poly(ethylene glycol) (PEG) and cyanoresin type M (CRM) with various lithium salts and plasticizer were examined. The CRM used was a copolymer of cyanoethyl pullulan and cyanoethyl poly(vinyl alcohol) with a molar ratio of 1:1, mixed plasticizer was ethylene carbonate (EC) and propylene carbonate (PC) at a volume ratio of 1:1. The conductive behavior of polymer electrolytes in the temperature range of $298{\sim}338\;K$ was investigated. The $PEG/LiClO_4$ complexes exhibited the highest ionic conductivity of ${\sim}10^{-5}S/cm$ at $25^{\circ}C$ with the salt concentration of 1.5 M. In addition, the plasticized $PEG/LiClO_4$ complexes exhibited improvement of ionic conductivity. However, their complexes showed decreased mechanical properties. The improvement of ionic conductivity and mechanical properties could be obtained from the polymer electrolytes by using CRM. The highest ionic conductivity of PEG/CRM/$LiClO_4$/(EC-PC) was $5.33{\time}10^{-4}S/cm$ at $25^{\circ}C$.