DOI QR코드

DOI QR Code

Spectroscopic Characterization of Aqueous and Colloidal Am(III)-CO3 Complexes for Monitoring Species Evolution

  • Received : 2022.07.25
  • Accepted : 2022.09.27
  • Published : 2022.12.30

Abstract

Carbonates are inorganic ligands that are abundant in natural groundwater. They strongly influence radionuclide mobility by forming strong complexes, thereby increasing solubility and reducing soil absorption rates. We characterized the spectroscopic properties of Am(III)-carbonate species using UV-Vis absorption and time-resolved laser-induced fluorescence spectroscopy. The deconvoluted absorption spectra of aqueous Am(CO3)2- and Am(CO3)33- species were identified at red-shifted positions with lower molar absorption coefficients compared to the absorption spectrum of aqua Am3+. The luminescence spectrum of Am(CO3)33- was red-shifted from 688 nm for Am3+ to 695 nm with enhanced intensity and an extended lifetime. Colloidal Am(III)-carbonate compounds exhibited absorption at approximately 506 nm but had non-luminescent properties. Slow formation of colloidal particles was monitored based on the absorption spectral changes over the sample aging time. The experimental results showed that the solubility of Am(III) in carbonate solutions was higher than the predicted values from the thermodynamic constants in OECD-NEA reviews. These results emphasize the importance of kinetic parameters as well as thermodynamic constants to predict radionuclide migration. The identified spectroscopic properties of Am(III)-carbonate species enable monitoring time-dependent species evolution in addition to determining the thermodynamics of Am(III) in carbonate systems.

Keywords

Acknowledgement

This research was supported by the Nuclear Research and Development Program of the National Research Foundation of Korea (Nos. 2021M2E1A1085202 and 2022M2D2A1A02063990).

References

  1. J.I. Kim, "Significance of Actinide Chemistry for the Long-Term Safety of Waste Disposal", Nucl. Eng. Technol., 38, 459-482 (2006). 
  2. I. Grenthe, X. Gaona, A.V. Plyasunov, L. Rao, W.H. Runde, B. Grambow, R.J.M. Konings, A.L. Smith, and E.E. Moore. Chemical Thermodynamics Vol. 14: Second Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium, and Technetium, OECD Nuclear Energy Agency Report (2020). 
  3. Z. Wang, J.M. Zachara, W. Yantasee, P.L. Gassman, C. Liu, and A.G. Joly, "Cryogenic Laser Induced Fluorescence Characterization of U(VI) in Hanford Vadose Zone Pore Waters", Environ. Sci. Technol., 38(21), 5591-5597 (2004).  https://doi.org/10.1021/es049512u
  4. G. Bernhard, G. Geipel, V. Brendler, and H. Nitsche, "Speciation of Uranium in Seepage Waters of a Mine Tailing Pile Studied by Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS)", Radiochim. Acta, 74(s1), 87-91 (1996).  https://doi.org/10.1524/ract.1996.74.special-issue.87
  5. Y. Jo, H.R. Cho, and J.I. Yun, "Visible-NIR Absorption Spectroscopy Study of the Formation of Ternary Plutonyl(VI) Carbonate Complexes", Dalton Trans., 49(33), 11605-11612 (2020).  https://doi.org/10.1039/d0dt01982h
  6. M.H. Baik, E.C. Jung, and J. Jeong, "Determination of Uranium Concentration and Speciation in Natural Granitic Groundwater Using TRLFS", J. Radioanal. Nucl. Chem., 305(2), 589-598 (2015).  https://doi.org/10.1007/s10967-015-3971-2
  7. E.C. Jung, M.H. Baik, H.R. Cho, H.K. Kim, and W. Cha, "Study on the Interaction of U(VI) Species With Natural Organic Matters in KURT Groundwater", J. Nucl. Fuel Cycle Waste Technol., 15(2), 101-116 (2017).  https://doi.org/10.7733/jnfcwt.2017.15.2.101
  8. J.Y. Lee and J.I. Yun, "Formation of Ternary CaUO2(CO3)32- and Ca2UO2(CO3)3(aq) Complexes Under Neutral to Weakly Alkaline Conditions", Dalton Trans., 42(27), 9862-9869 (2013).  https://doi.org/10.1039/c3dt50863c
  9. Y. Jo, A. Kirishima, S. Kimuro, H.K. Kim, and J.I. Yun, "Formation of CaUO2(CO3)32- and Ca2UO2(CO3)3(aq) Complexes at Variable Temperatures (10-70℃)", Dalton Trans., 48(20), 6942-6950 (2019).  https://doi.org/10.1039/c9dt01174a
  10. Z. Zheng, T.K. Tokunaga, and J. Wan, "Influence of Calcium Carbonate on U(VI) Sorption to Soils", Environ. Sci. Technol., 37(24), 5603-5608 (2003).  https://doi.org/10.1021/es0304897
  11. W. Dong, W.P. Ball, C. Liu, Z. Wang, A.T. Stone, J. Bai, and J.M. Zachara, "Influence of Calcite and Dissolved Calcium on Uranium(VI) Sorption to a Hanford Subsurface Sediment", Environ. Sci. Technol., 39(20), 7949-7955 (2005).  https://doi.org/10.1021/es0505088
  12. S.C. Brooks, J.K. Fredrickson, S.L. Carroll, D.W. Kennedy, J.M. Zachara, A.E. Plymale, S.D. Kelly, K.M. Kemner, and S. Fendorf, "Inhibition of Bacterial U(VI) Reduction by Calcium", Environ. Sci. Technol., 37(9), 1850-1858 (2003).  https://doi.org/10.1021/es0210042
  13. R. Guillaumont, T. Fanghanel, V. Neck, J. Fuger, D. Palmer, I. Grenthe, and M.H. Rand, Chemical Thermodynamics Vol. 5: Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium, and Technetium, Elsevier, Amsterdam (2003). 
  14. R. Lundqvist, "Hydrophilic Complexes of the Actinides. I. Carbonates of Trivalent Americium and Europium", Acta Chem. Scand., A36, 741-750 (1982).  https://doi.org/10.3891/acta.chem.scand.36a-0741
  15. T. Vercouter, P. Vitorge, B. Amekraz, E. Giffaut, S. Hubert, and C. Moulin, "Stabilities of the Aqueous Complexes Cm(CO3)33- and Am(CO3)33- in the Temperature Range 10-70℃", Inorg. Chem., 44(16), 5833-5843 (2005).  https://doi.org/10.1021/ic050214n
  16. A.R. Felmy, D. Rai, and R.W. Fulton, "The Solubility of AmOHCO3(c) and the Aqueous Thermodynamics of the System Na+-Am3+-HCO3--CO32--OH--H2O", Radiochim. Acta, 50(4), 193-204 (1990).  https://doi.org/10.1524/ract.1990.50.4.193
  17. G. Meinrath and J.I. Kim, "The Carbonate Complexation of the Am(III) Ion", Radiochim. Acta, 52-53(1), 29-34 (1991).  https://doi.org/10.1524/ract.1991.5253.1.29
  18. H. Nitsche and E.M. Standifer, "Americium(lll) Carbonate Complexation in Aqueous Perchlorate Solution", Radiochim. Acta, 46(4), 185-190 (1989).  https://doi.org/10.1524/ract.1989.46.4.185
  19. J.I. Kim, R. Klenze, H. Wimmer, W. Runde, and W. Hauser, "A Study of the Carbonate Complexation of CmIII and EuIII by Time-resolved Laser Fluorescence Spectroscopy", J. Alloys. Compd., 213-214, 333-340 (1994).  https://doi.org/10.1016/0925-8388(94)90925-3
  20. Th. Fanghanel, Η.Τ. Weger, Th. Konnecke, V. Neck, P. Paviet-Hartmann, E. Steinle, and J.I. Kim, "Thermodynamics of Cm(III) in Concentrated Electrolyte Solutions. Carbonate Complexation at Constant Ionic Strength (1 m NaCl)", Radiochim. Acta, 82(s1), 47-53 (1998).  https://doi.org/10.1524/ract.1998.82.special-issue.47
  21. Th. Fanghanel, Th. Konnecke, H. Weger, P. Paviet-Hartmann, V. Neck, and J.I. Kim, "Thermodynamics of Cm(III) in Concentrated Salt Solutions: Carbonate Complexation in NaCl Solution at 25℃", J. Solution Chem., 28(4), 447-462 (1999).  https://doi.org/10.1023/A:1022664013648
  22. T. Vercouter, P. Vitorge, N. Trigoulet, E. Giffaut, and C. Moulin, "Eu(CO3)33- and the Limiting Carbonate Complexes of Other M3+ f-elements in Aqueous Solutions: A Solubility and TRLFS Study", New J. Chem., 29(4), 544-553 (2005).  https://doi.org/10.1039/b413002b
  23. V. Philippini, T. Vercouter, and P. Vitorge, "Evidence of Different Stoichiometries for the Limiting Carbonate Complexes Across the Lanthanide(III) Series", J. Solution Chem., 39(6), 747-769 (2010).  https://doi.org/10.1007/s10953-010-9539-4
  24. H.K. Kim, H.R. Cho, E.C. Jung, and W. Cha, "Radioanalytical and Spectroscopic Characterizations of Hydroxo- and Oxalato-Am(III) Complexes", J. Nucl. Fuel Cycle Waste Technol., 16(4), 397-410 (2018).  https://doi.org/10.7733/jnfcwt.2018.16.4.397
  25. T.K. Keenan, "Americium and Curium", J. Chem. Educ., 36(1), 27-31 (1959).  https://doi.org/10.1021/ed036p27
  26. R. Klenze, J.I. Kim, and H. Wimmer, "Speciation of Aquatic Actinide Ions by Pulsed Laser Spectroscopy", Radiochim. Acta, 52-53, 97-103 (1991).  https://doi.org/10.1524/ract.1991.5253.1.97
  27. H.K. Kim, K. Jeong, H.R. Cho, E.C. Jung, K. Kwak, and W. Cha, "Spectroscopic Speciation of Aqueous Am(III)-Oxalate Complexes", Dalton Trans., 48(27), 10023-10032 (2019).  https://doi.org/10.1039/c9dt01087d
  28. H.K. Kim, K. Jeong, H.R. Cho, K. Kwak, E.C. Jung, and W. Cha, "Study of Aqueous Am(III)-Aliphatic Dicarboxylate Complexes: Coordination Mode-Dependent Optical Property and Stability Changes", Inorg. Chem., 59(19), 13912-13922 (2020).  https://doi.org/10.1021/acs.inorgchem.0c01538
  29. W. Runde, C. Van Pelt, and P.G. Allen, "Spectroscopic Characterization of Trivalent f-element (Eu, Am) Solid Carbonates", J. Alloys Compd., 303-304, 182-190 (2000).  https://doi.org/10.1016/S0925-8388(00)00665-4
  30. S. Cho, H.K. Kim, T.H. Kim, W. Cha, and H.R. Cho, "Thermodynamic Studies on the Hydrolysis of Trivalent Plutonium and Solubility of Pu(OH)3(am)", Inorg. Chem., 61(32), 12643-12651 (2022).  https://doi.org/10.1021/acs.inorgchem.2c01590
  31. N. Jordan, M. Demnitz, H. Losch, S. Starke, V. Brendler, and N. Huittinen, "Complexation of Trivalent Lanthanides (Eu) and Actinides (Cm) With Aqueous Phosphates at Elevated Temperatures", Inorg. Chem., 57(12), 7015-7024 (2018).  https://doi.org/10.1021/acs.inorgchem.8b00647
  32. E.C. Jung, H.R. Cho, M.H. Baik, H. Kim, and W. Cha, "Time-resolved Laser Fluorescence Spectroscopy of UO2(CO3)34-", Dalton Trans., 44(43), 18831-18838 (2015).  https://doi.org/10.1039/C5DT02873F
  33. W.D. Horrocks and D.R. Sudnick, "Lanthanide Ion Probes of Structure in Biology. Laser-induced Luminescence Decay Constants Provide a Direct Measure of the Number of Metal-coordinated Water Molecules", J. Am. Chem. Soc., 101(2), 334-340 (1979).  https://doi.org/10.1021/ja00496a010
  34. T. Kimura and Y. Kato, "Luminescence Study on Determination of the Inner-Sphere Hydration Number of Am(III) and Nd(III)", J. Alloys Compd., 271-273, 867-871 (1998).  https://doi.org/10.1016/S0925-8388(98)00236-9
  35. C. Priest, Z. Tian, and D. Jiang, "First-Principles Molecular Dynamics Simulation of the Ca2UO2(CO3)3 Complex in Water", Dalton Trans., 45(24), 9812-9819 (2016). https://doi.org/10.1039/c5dt04576b