DOI QR코드

DOI QR Code

Ultrasonic-assisted dissolution of U3O8 in carbonate medium

  • Chenxi Hou (College of Nuclear Science and Technology, Harbin Engineering University) ;
  • Mingjian He (College of Nuclear Science and Technology, Harbin Engineering University) ;
  • Haofan Fang (College of Nuclear Science and Technology, Harbin Engineering University) ;
  • Meng Zhang (College of Nuclear Science and Technology, Harbin Engineering University) ;
  • Yang Gao (College of Nuclear Science and Technology, Harbin Engineering University) ;
  • Caishan Jiao (College of Nuclear Science and Technology, Harbin Engineering University) ;
  • Hui He (Department of Radiochemistry, China Institute of Atomic Energy)
  • Received : 2022.05.23
  • Accepted : 2022.09.23
  • Published : 2023.01.25

Abstract

Ultrasound-assisted dissolution of U3O8 powder in carbonate solution was explored to determine if and how ultrasound act during the dissolution. The variation of U3O8 solid particles and uranyl complexes under ultrasound treatment and magnetic stirring was observed in carbonate media. The results show that the use of ultrasound can increase the solubility and dissolution rate of U3O8 powder than that under magnetic stirring. The crush of U3O8 particles and the reduction of the activation energy (Ea, kJ/mol) of U3O8 dissolution reaction were observed, which both play an important role in the ultrasonic-assisted dissolution of U3O8 in carbonate-peroxide solution. Meanwhile, there is no observation of the ultrasound effect on the distribution of uranyl species and hydrolysis of uranyl complexes during the ultrasound treatment in carbonate-peroxide solution. Although the generation of ·OH radicals under ultrasound (22 ± 2 kHz) was observed, the oxidation of ·OH had little effect on the dissolution of U3O8 in the carbonate-peroxide solution system.

Keywords

Acknowledgement

We acknowledge financial support from the National Natural Science Foundation of China (U1967219).

References

  1. R. Taylor, K. Nash, M. Nilsson, C. Poinssot, B. Koppelman, Reprocessing and Recycling of Spent Nuclear Fuel, Nuclear Energy Encyclopedia: Science, Technology, and Applications, Woodhead Publishing, 2015. 
  2. K.L. Nash, G.J. Lumetta, Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment, Woodhead Publishing, Oxford, 2011. 
  3. U.K. Mudali, R.K. Dayal, J.B. Gnanamoorthy, Corrosion studies on materials of construction for spent nuclear fuel reprocessing plant equipment, J. Nucl. Mater. 203 (1) (1993) 73-82, https://doi.org/10.1016/0022-3115(93)90432-X. 
  4. C.Z. Soderquist, A.M. Johnsen, B.K. McNamara, B.D. Hanson, J.W. Chenault, K.J. Carson, S.M. Peper, Dissolution of irradiated commercial UO2 fuels in ammonium carbonate and hydrogen peroxide, Ind. Eng. Chem. Res. 50 (4) (2011) 1813-1818, https://doi.org/10.1021/ie101386n. 
  5. S.I. Stepanov, A.V. Boyarintsev, M.V. Vazhenkov, B.F. Myasoedov, E.O. Nazarov, A.M. Safiulina, I.G. Tananaev, H.V. So, A.M. Chekmarev, A.Y. Civadze, CARBEX process, a new technology of reprocessing of spent nuclear fuel, Russ. J. Gen. Chem. 81 (9) (2011) 1949-1959, https://doi.org/10.1134/S1070363211090404. 
  6. A.V. Boyarintsev, S.I. Stepanov, G.V. Kostikova, V.I. Zhilov, A.M. Chekmarev, A.Y. Tsivadze, Reprocessing of simulated voloxidized uranium-oxide SNF in the CARBEX process, Nucl. Eng. Technol. 51 (7) (2019) 1799-1804, https://doi.org/10.1016/j.net.2019.05.020. 
  7. C. Soderquist, B. Hanson, Dissolution of spent nuclear fuel in carbonate-peroxide solution, J. Nucl. Mater. 396 (2-3) (2010) 159-162, https://doi.org/10.1016/j.jnucmat.2009.11.001. 
  8. K.W. Kim, D.Y. Chung, H.B. Yang, J.K. Lim, E.H. Lee, K.C. Song, K. Song, A conceptual process study for recovery of uranium alone from spent nuclear fuel by using high-alkaline carbonate media, Nucl. Technol. 166 (2) (2009) 170-179, https://doi.org/10.13182/Nt09-A7403. 
  9. N. Asanuma, M. Harada, Y. Ikeda, H. Tomiyasu, New approach to the nuclear fuel reprocessing in non-acidic aqueous solutions, J. Nucl. Sci. Technol. 38 (10) (2001) 866-871, https://doi.org/10.3327/jnst.38.866. 
  10. S.I. Stepanov, A.V. Boyarintsev, Reprocessing of spent nuclear fuel in carbonate media: problems, achievements, and prospects, Nucl. Eng. Technol. (2022), https://doi.org/10.1016/j.net.2022.01.009. 
  11. S.I. Stepanov, A.M. Chekmarev, Concept of spent nuclear fuel reprocessing, Dokl. Chem. 423 (1) (2008) 69-71, https://doi.org/10.1134/S0012500808110037. 
  12. S.M. Peper, L.F. Brodnax, S.E. Field, R.A. Zehnder, S.N. Valdez, W.H. Runde, Kinetic study of the oxidative dissolution of UO2 in aqueous carbonate media, Ind. Eng. Chem. Res. 43 (26) (2004) 8188-8193, https://doi.org/10.1021/ie049457y. 
  13. S.I. Stepanov, A.V. Boyarintsev, A.M. Chekmarev, Physicochemical foundations of spent nuclear fuel leaching in carbonate solutions, Dokl. Chem. 427 (2009) 202-206, https://doi.org/10.1134/S0012500809080060. 
  14. S.C. Smith, S.M. Peper, M. Douglas, K.L. Ziegelgruber, E.C. Finn, Dissolution of uranium oxides under alkaline oxidizing conditions, J. Radioanal. Nucl. Chem. 282 (2) (2009) 617-621, https://doi.org/10.1007/s10967-009-0182-8. 
  15. T.J. Mason, J.P. Lorimer, Applied Sonochemistry : the Uses of Power Ultrasound in Chemistry and Processing, Wiley-VCH, Weinheim, 2001. 
  16. D.G. Shchukin, E. Skorb, V. Belova, H. Mohwald, Ultrasonic cavitation at solid surfaces, Adv. Mater. 23 (17) (2011) 1922-1934, https://doi.org/10.1002/adma.201004494. 
  17. S.I. Nikitenko, L. Venault, R. Pflieger, T. Chave, I. Bisel, P. Moisy, Potential applications of sonochemistry in spent nuclear fuel reprocessing: a short review, Ultrason. Sonochem. 17 (6) (2010) 1033-1040, https://doi.org/10.1016/j.ultsonch.2009.11.012. 
  18. Y. Enokida, S.A. El-Fatah, C.M. Wai, Ultrasound-enhanced dissolution of UO2 in supercritical CO2 containing a CO2-philic complexant of tri-n-butylphosphate and nitric acid, Ind. Eng. Chem. Res. 41 (9) (2002) 2282-2286, https://doi.org/10.1021/ie010761q. 
  19. S.I. Nikitenko, C. Le Naour, P. Moisy, Comparative study of sonochemical reactors with different geometry using thermal and chemical probes, Ultrason. Sonochem. 14 (3) (2007) 330-336, https://doi.org/10.1016/j.ultsonch.2006.06.006. 
  20. X. Beaudoux, M. Virot, T. Chave, G. Leturcq, G. Jouan, L. Venault, P. Moisy, S.I. Nikitenko, Ultrasound-assisted reductive dissolution of CeO2 and PuO2 in the presence of Ti particles, Dalton Trans. 45 (21) (2016) 8802-8815, https://doi.org/10.1039/c5dt04931h. 
  21. M. Virot, L. Venault, P. Moisy, S.I. Nikitenko, Sonochemical redox reactions of Pu(III) and Pu(IV) in aqueous nitric solutions, Dalton Trans. 44 (6) (2015) 2567-2574, https://doi.org/10.1039/c4dt02330g. 
  22. L. Venault, De l'Influence des Ultrasons sur la Reactivite de l'Uranium (U(IV)/U(VI)) et du Plutonium (Pu(III)/Pu(IV)) en Solution Aqueuse Nitrique, 1997. Paris. 
  23. D. Ensminger, L.J. Bond, Ultrasonics. : Fundamentals, Technologies, and Applications, third ed., Taylor & Francis, Boca Raton, FL, 2012. 
  24. N. Masuda, A. Maruyama, T. Eguchi, T. Hirakawa, Y. Murakami, Influence of microbubbles on free radical generation by ultrasound in aqueous solution: dependence of ultrasound frequency, J. Phys. Chem. B 119 (40) (2015) 12887-12893, https://doi.org/10.1021/acs.jpcb.5b05707. 
  25. M.M. van Iersel, N.E. Benes, J.T. Keurentjes, Importance of acoustic shielding in sonochemistry, Ultrason. Sonochem. 15 (4) (2008) 294-300.  https://doi.org/10.1016/j.ultsonch.2007.09.015
  26. G.S. Goff, L.F. Brodnax, M.R. Cisneros, S.M. Peper, S.E. Field, B.L. Scoft, W.H. Runde, First identification and thermodynamic characterization of the ternary U(VI) species, UO2O2(CO3)24-, in UO2-H2O2-K2CO3 solutions, Inorg. Chem. 47 (6) (2008) 1984-1990, https://doi.org/10.1021/ic701775g. 
  27. K.W. Kim, E.C. Jung, K.Y. Lee, H.R. Cho, E.H. Lee, D.Y. Chung, Evaluation of the behavior of uranium peroxocarbonate complexes in Na-U(VI)-CO3-OH-H2O2 solutions by Raman spectroscopy, J. Phys. Chem. 116 (49) (2012) 12024-12031, https://doi.org/10.1021/jp307062u. 
  28. Y.G. Adewuyi, Sonochemistry: environmental science and engineering applications, Ind. Eng. Chem. Res. 40 (22) (2001) 4681-4715, https://doi.org/10.1021/ie010096l. 
  29. D. Chen, S.K. Sharma, A. Mudhoo, Handbook on Applications of Ultrasound: Sonochemistry for Sustainability, CRC press, 2011. 
  30. P.L. Zanonato, P. Di Bernardo, Z. Szabo, I. Grenthe, Chemical equilibria in the uranyl(VI)-peroxide-carbonate system; identification of precursors for the formation of poly-peroxometallates, Dalton Trans. 41 (38) (2012) 11635-11641, https://doi.org/10.1039/c2dt31282d. 
  31. T. Watanabe, Y. Ikeda, A study on identification of uranyl complexes in aqueous solutions containing carbonate ion and hydrogen peroxide, Enrgy. Proced. 39 (2013) 81-95, https://doi.org/10.1016/j.egypro.2013.07.194. 
  32. Z.Y. Zhu, J.J. Noel, D.W. Shoesmith, Hydrogen peroxide decomposition on simulated nuclear fuel bicarbonate carbonate solutions, Electrochim. Acta 340 (2020), https://doi.org/10.1016/j.electacta.2020.135980. 
  33. H.H.B.P. Lee, C.W. Oloman, Stability of hydrogen peroxide in sodium carbonate solutions, A, Tappi J. 83 (8) (2000). 
  34. K.W. Kim, Y.H. Kim, S.Y. Lee, J.W. Lee, K.S. Joe, E.H. Lee, J.S. Kim, K. Song, K.C. Song, Precipitation characteristics of uranyl ions at different pHs depending on the presence of carbonate ions and hydrogen peroxide, Environ. Sci. Technol. 43 (7) (2009) 2355-2361, https://doi.org/10.1021/es802951b. 
  35. C. Hou, H. He, J. Sun, B. Yang, H. Fang, C. Jiao, M. He, Dissolution of uranium dioxide powder in carbonate-peroxide solution, J. Radioanal. Nucl. Chem. (2022), https://doi.org/10.1007/s10967-022-08263-8. 
  36. C. Greaves, A. Cheetham, B. Fender, Sodium uranium bronze and related phases, Inorg. Chem. 12 (12) (1973) 3003-3007.  https://doi.org/10.1021/ic50130a054
  37. S.J. Chipera, D.L. Bish, Multireflection RIR and intensity normalizations for quantitative analyses: applications to feldspars and zeolites, Powder Diffr. 10 (1) (1995) 47-55, https://doi.org/10.1017/S0885715600014305. 
  38. D.L. Bish, J.E. Post, Quantitative mineralogical analysis using the Rietveld full-pattern fitting method, Am. Mineral. 78 (9-10) (1993) 932-940. 
  39. D.L. Bish, S.A. Howard, Quantitative phase analysis using the Rietveld method, J. Appl. Crystallogr. 21 (1988) 86-91, https://doi.org/10.1107/S0021889887009415. 
  40. A.C. Lasaga, A. Luttge, Variation of crystal dissolution rate based on a dissolution stepwave model, Science 291 (5512) (2001) 2400-2404.  https://doi.org/10.1126/science.1058173
  41. A. Keck, E. Gilbert, R. Koster, In fluence of particles on sonochemical reactions in aqueous solutions, Ultrasonics 40 (1-8) (2002) 661-665.  https://doi.org/10.1016/S0041-624X(02)00195-6
  42. T. Tuziuti, K. Yasui, Y. Iida, H. Taoda, S. Koda, Effect of particle addition on sonochemical reaction, Ultrasonics 42 (1-9) (2004) 597-601.  https://doi.org/10.1016/j.ultras.2004.01.082
  43. H. Li, Y. Li, Z. Li, The heating phenomenon produced by an ultrasonic fountain, Ultrason. Sonochem. 4 (2) (1997) 217-218.  https://doi.org/10.1016/S1350-4177(97)00019-9
  44. M. Legay, N. Gondrexon, S. Le Person, P. Boldo, A. Bontemps, Enhancement of heat transfer by ultrasound: review and recent advances, Int. J. Chem. Eng. (2011). 
  45. T.G. Adams, Dissolution of Uranium Dioxide Microspheres in Carbonate and Hydrogen Peroxide Solutions, Oregon State University, 2013. 
  46. W.J. Gray, H.R. Leider, S.A. Steward, Parametric study of LWR spent fuel dissolution kinetics, J. Nucl. Mater. 190 (1992) 46-52, https://doi.org/10.1016/0022-3115(92)90074-U. 
  47. K. Vilkhu, R. Mawson, L. Simons, D. Bates, Applications and opportunities for ultrasound assisted extraction in the food industry - a review, Innov. Food. Sci. Emerg. 9 (2) (2008) 161-169, https://doi.org/10.1016/j.ifset.2007.04.014. 
  48. Y.T. Didenko, K.S. Suslick, The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation, Nature 418 (6896) (2002) 394-397, https://doi.org/10.1038/nature00895. 
  49. L.H. Thompson, L. Doraiswamy, Sonochemistry: science and engineering, Ind. Eng. Chem. Res. 38 (4) (1999) 1215-1249. https://doi.org/10.1021/ie9804172