Acknowledgement
We acknowledge financial support from the National Natural Science Foundation of China (U1967219).
References
- R. Taylor, K. Nash, M. Nilsson, C. Poinssot, B. Koppelman, Reprocessing and Recycling of Spent Nuclear Fuel, Nuclear Energy Encyclopedia: Science, Technology, and Applications, Woodhead Publishing, 2015.
- K.L. Nash, G.J. Lumetta, Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment, Woodhead Publishing, Oxford, 2011.
- U.K. Mudali, R.K. Dayal, J.B. Gnanamoorthy, Corrosion studies on materials of construction for spent nuclear fuel reprocessing plant equipment, J. Nucl. Mater. 203 (1) (1993) 73-82, https://doi.org/10.1016/0022-3115(93)90432-X.
- C.Z. Soderquist, A.M. Johnsen, B.K. McNamara, B.D. Hanson, J.W. Chenault, K.J. Carson, S.M. Peper, Dissolution of irradiated commercial UO2 fuels in ammonium carbonate and hydrogen peroxide, Ind. Eng. Chem. Res. 50 (4) (2011) 1813-1818, https://doi.org/10.1021/ie101386n.
- S.I. Stepanov, A.V. Boyarintsev, M.V. Vazhenkov, B.F. Myasoedov, E.O. Nazarov, A.M. Safiulina, I.G. Tananaev, H.V. So, A.M. Chekmarev, A.Y. Civadze, CARBEX process, a new technology of reprocessing of spent nuclear fuel, Russ. J. Gen. Chem. 81 (9) (2011) 1949-1959, https://doi.org/10.1134/S1070363211090404.
- A.V. Boyarintsev, S.I. Stepanov, G.V. Kostikova, V.I. Zhilov, A.M. Chekmarev, A.Y. Tsivadze, Reprocessing of simulated voloxidized uranium-oxide SNF in the CARBEX process, Nucl. Eng. Technol. 51 (7) (2019) 1799-1804, https://doi.org/10.1016/j.net.2019.05.020.
- C. Soderquist, B. Hanson, Dissolution of spent nuclear fuel in carbonate-peroxide solution, J. Nucl. Mater. 396 (2-3) (2010) 159-162, https://doi.org/10.1016/j.jnucmat.2009.11.001.
- K.W. Kim, D.Y. Chung, H.B. Yang, J.K. Lim, E.H. Lee, K.C. Song, K. Song, A conceptual process study for recovery of uranium alone from spent nuclear fuel by using high-alkaline carbonate media, Nucl. Technol. 166 (2) (2009) 170-179, https://doi.org/10.13182/Nt09-A7403.
- N. Asanuma, M. Harada, Y. Ikeda, H. Tomiyasu, New approach to the nuclear fuel reprocessing in non-acidic aqueous solutions, J. Nucl. Sci. Technol. 38 (10) (2001) 866-871, https://doi.org/10.3327/jnst.38.866.
- S.I. Stepanov, A.V. Boyarintsev, Reprocessing of spent nuclear fuel in carbonate media: problems, achievements, and prospects, Nucl. Eng. Technol. (2022), https://doi.org/10.1016/j.net.2022.01.009.
- S.I. Stepanov, A.M. Chekmarev, Concept of spent nuclear fuel reprocessing, Dokl. Chem. 423 (1) (2008) 69-71, https://doi.org/10.1134/S0012500808110037.
- S.M. Peper, L.F. Brodnax, S.E. Field, R.A. Zehnder, S.N. Valdez, W.H. Runde, Kinetic study of the oxidative dissolution of UO2 in aqueous carbonate media, Ind. Eng. Chem. Res. 43 (26) (2004) 8188-8193, https://doi.org/10.1021/ie049457y.
- S.I. Stepanov, A.V. Boyarintsev, A.M. Chekmarev, Physicochemical foundations of spent nuclear fuel leaching in carbonate solutions, Dokl. Chem. 427 (2009) 202-206, https://doi.org/10.1134/S0012500809080060.
- S.C. Smith, S.M. Peper, M. Douglas, K.L. Ziegelgruber, E.C. Finn, Dissolution of uranium oxides under alkaline oxidizing conditions, J. Radioanal. Nucl. Chem. 282 (2) (2009) 617-621, https://doi.org/10.1007/s10967-009-0182-8.
- T.J. Mason, J.P. Lorimer, Applied Sonochemistry : the Uses of Power Ultrasound in Chemistry and Processing, Wiley-VCH, Weinheim, 2001.
- D.G. Shchukin, E. Skorb, V. Belova, H. Mohwald, Ultrasonic cavitation at solid surfaces, Adv. Mater. 23 (17) (2011) 1922-1934, https://doi.org/10.1002/adma.201004494.
- S.I. Nikitenko, L. Venault, R. Pflieger, T. Chave, I. Bisel, P. Moisy, Potential applications of sonochemistry in spent nuclear fuel reprocessing: a short review, Ultrason. Sonochem. 17 (6) (2010) 1033-1040, https://doi.org/10.1016/j.ultsonch.2009.11.012.
- Y. Enokida, S.A. El-Fatah, C.M. Wai, Ultrasound-enhanced dissolution of UO2 in supercritical CO2 containing a CO2-philic complexant of tri-n-butylphosphate and nitric acid, Ind. Eng. Chem. Res. 41 (9) (2002) 2282-2286, https://doi.org/10.1021/ie010761q.
- S.I. Nikitenko, C. Le Naour, P. Moisy, Comparative study of sonochemical reactors with different geometry using thermal and chemical probes, Ultrason. Sonochem. 14 (3) (2007) 330-336, https://doi.org/10.1016/j.ultsonch.2006.06.006.
- X. Beaudoux, M. Virot, T. Chave, G. Leturcq, G. Jouan, L. Venault, P. Moisy, S.I. Nikitenko, Ultrasound-assisted reductive dissolution of CeO2 and PuO2 in the presence of Ti particles, Dalton Trans. 45 (21) (2016) 8802-8815, https://doi.org/10.1039/c5dt04931h.
- M. Virot, L. Venault, P. Moisy, S.I. Nikitenko, Sonochemical redox reactions of Pu(III) and Pu(IV) in aqueous nitric solutions, Dalton Trans. 44 (6) (2015) 2567-2574, https://doi.org/10.1039/c4dt02330g.
- L. Venault, De l'Influence des Ultrasons sur la Reactivite de l'Uranium (U(IV)/U(VI)) et du Plutonium (Pu(III)/Pu(IV)) en Solution Aqueuse Nitrique, 1997. Paris.
- D. Ensminger, L.J. Bond, Ultrasonics. : Fundamentals, Technologies, and Applications, third ed., Taylor & Francis, Boca Raton, FL, 2012.
- N. Masuda, A. Maruyama, T. Eguchi, T. Hirakawa, Y. Murakami, Influence of microbubbles on free radical generation by ultrasound in aqueous solution: dependence of ultrasound frequency, J. Phys. Chem. B 119 (40) (2015) 12887-12893, https://doi.org/10.1021/acs.jpcb.5b05707.
- M.M. van Iersel, N.E. Benes, J.T. Keurentjes, Importance of acoustic shielding in sonochemistry, Ultrason. Sonochem. 15 (4) (2008) 294-300. https://doi.org/10.1016/j.ultsonch.2007.09.015
- G.S. Goff, L.F. Brodnax, M.R. Cisneros, S.M. Peper, S.E. Field, B.L. Scoft, W.H. Runde, First identification and thermodynamic characterization of the ternary U(VI) species, UO2O2(CO3)24-, in UO2-H2O2-K2CO3 solutions, Inorg. Chem. 47 (6) (2008) 1984-1990, https://doi.org/10.1021/ic701775g.
- K.W. Kim, E.C. Jung, K.Y. Lee, H.R. Cho, E.H. Lee, D.Y. Chung, Evaluation of the behavior of uranium peroxocarbonate complexes in Na-U(VI)-CO3-OH-H2O2 solutions by Raman spectroscopy, J. Phys. Chem. 116 (49) (2012) 12024-12031, https://doi.org/10.1021/jp307062u.
- Y.G. Adewuyi, Sonochemistry: environmental science and engineering applications, Ind. Eng. Chem. Res. 40 (22) (2001) 4681-4715, https://doi.org/10.1021/ie010096l.
- D. Chen, S.K. Sharma, A. Mudhoo, Handbook on Applications of Ultrasound: Sonochemistry for Sustainability, CRC press, 2011.
- P.L. Zanonato, P. Di Bernardo, Z. Szabo, I. Grenthe, Chemical equilibria in the uranyl(VI)-peroxide-carbonate system; identification of precursors for the formation of poly-peroxometallates, Dalton Trans. 41 (38) (2012) 11635-11641, https://doi.org/10.1039/c2dt31282d.
- T. Watanabe, Y. Ikeda, A study on identification of uranyl complexes in aqueous solutions containing carbonate ion and hydrogen peroxide, Enrgy. Proced. 39 (2013) 81-95, https://doi.org/10.1016/j.egypro.2013.07.194.
- Z.Y. Zhu, J.J. Noel, D.W. Shoesmith, Hydrogen peroxide decomposition on simulated nuclear fuel bicarbonate carbonate solutions, Electrochim. Acta 340 (2020), https://doi.org/10.1016/j.electacta.2020.135980.
- H.H.B.P. Lee, C.W. Oloman, Stability of hydrogen peroxide in sodium carbonate solutions, A, Tappi J. 83 (8) (2000).
- K.W. Kim, Y.H. Kim, S.Y. Lee, J.W. Lee, K.S. Joe, E.H. Lee, J.S. Kim, K. Song, K.C. Song, Precipitation characteristics of uranyl ions at different pHs depending on the presence of carbonate ions and hydrogen peroxide, Environ. Sci. Technol. 43 (7) (2009) 2355-2361, https://doi.org/10.1021/es802951b.
- C. Hou, H. He, J. Sun, B. Yang, H. Fang, C. Jiao, M. He, Dissolution of uranium dioxide powder in carbonate-peroxide solution, J. Radioanal. Nucl. Chem. (2022), https://doi.org/10.1007/s10967-022-08263-8.
- C. Greaves, A. Cheetham, B. Fender, Sodium uranium bronze and related phases, Inorg. Chem. 12 (12) (1973) 3003-3007. https://doi.org/10.1021/ic50130a054
- S.J. Chipera, D.L. Bish, Multireflection RIR and intensity normalizations for quantitative analyses: applications to feldspars and zeolites, Powder Diffr. 10 (1) (1995) 47-55, https://doi.org/10.1017/S0885715600014305.
- D.L. Bish, J.E. Post, Quantitative mineralogical analysis using the Rietveld full-pattern fitting method, Am. Mineral. 78 (9-10) (1993) 932-940.
- D.L. Bish, S.A. Howard, Quantitative phase analysis using the Rietveld method, J. Appl. Crystallogr. 21 (1988) 86-91, https://doi.org/10.1107/S0021889887009415.
- A.C. Lasaga, A. Luttge, Variation of crystal dissolution rate based on a dissolution stepwave model, Science 291 (5512) (2001) 2400-2404. https://doi.org/10.1126/science.1058173
- A. Keck, E. Gilbert, R. Koster, In fluence of particles on sonochemical reactions in aqueous solutions, Ultrasonics 40 (1-8) (2002) 661-665. https://doi.org/10.1016/S0041-624X(02)00195-6
- T. Tuziuti, K. Yasui, Y. Iida, H. Taoda, S. Koda, Effect of particle addition on sonochemical reaction, Ultrasonics 42 (1-9) (2004) 597-601. https://doi.org/10.1016/j.ultras.2004.01.082
- H. Li, Y. Li, Z. Li, The heating phenomenon produced by an ultrasonic fountain, Ultrason. Sonochem. 4 (2) (1997) 217-218. https://doi.org/10.1016/S1350-4177(97)00019-9
- M. Legay, N. Gondrexon, S. Le Person, P. Boldo, A. Bontemps, Enhancement of heat transfer by ultrasound: review and recent advances, Int. J. Chem. Eng. (2011).
- T.G. Adams, Dissolution of Uranium Dioxide Microspheres in Carbonate and Hydrogen Peroxide Solutions, Oregon State University, 2013.
- W.J. Gray, H.R. Leider, S.A. Steward, Parametric study of LWR spent fuel dissolution kinetics, J. Nucl. Mater. 190 (1992) 46-52, https://doi.org/10.1016/0022-3115(92)90074-U.
- K. Vilkhu, R. Mawson, L. Simons, D. Bates, Applications and opportunities for ultrasound assisted extraction in the food industry - a review, Innov. Food. Sci. Emerg. 9 (2) (2008) 161-169, https://doi.org/10.1016/j.ifset.2007.04.014.
- Y.T. Didenko, K.S. Suslick, The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation, Nature 418 (6896) (2002) 394-397, https://doi.org/10.1038/nature00895.
- L.H. Thompson, L. Doraiswamy, Sonochemistry: science and engineering, Ind. Eng. Chem. Res. 38 (4) (1999) 1215-1249. https://doi.org/10.1021/ie9804172