• Title/Summary/Keyword: carbon-coated electrode

Search Result 130, Processing Time 0.026 seconds

Electrochemical Properties of Carbon Nano-Tube Electrode (탄소나노튜브 전극의 전기화학적 특성)

  • Lee Dong-Yoon;Koo Bo-Kun;Lee Won-Jae;Song Jae-Sung;Kim Hyun-Ju
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.4
    • /
    • pp.139-143
    • /
    • 2005
  • For application of carbon nano-tube (CNT) as a counter electrode materials of dye-sensitized solar cell (DSSC), the electrochemical behavior of CNT electrode was studied, employing cyclic-voltammetry (C-V) and impedance spectroscopy. Fabrication of CNT-paste and formation of CNT-counter electrode for characteristic measurement have been carried out using ball-milling and doctor blade process, respectively. Unit cell for measurements was assembled using Pt electrode, CNT electrode, and iodine-embedded electrolyte. Field emission-scanning electron microscopy (FE-SEM) was used for structural investigation of CNT powder and electrode. Sheet resistance of electrode was measured with 4-point probe method. Electrochemical properties of electrode, C-V and impedance spectrum, were studied, employing potentiogalvanostat (EG&G 273A) and lock in amplifier (EG&G 5210). As a results, the sheet resistance of CNT electrode is almost similar to that of F-doped SnO2 (FTO) coated glass substrate as approximately 10 ohm/sq. From C-V and impedance spectroscopy measurements, it was found that CNT electrode has high reaction rate and low interface reaction resistance between CNT surface and electrolyte. These results provides that CNT electrode were superior to that of conventional Pt electrode. Particularly, the reaction rate in the CNT electrode is about thrice high than Pt electrode. Therefore. CNT electrode is to be good candidate material for counter electrode in DSSC.

Ni-P Coated Sn Powders as Anode for Lithium Secondary Batteries

  • Jo, Yong-Nam;Im, Dong-Min;Kim, Jae-Jung;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.88-93
    • /
    • 2007
  • Nano-sized Sn particles were coated with Ni-P layer using an electroless deposition method and their anodic performance was tested for lithium secondary batteries. Uniform coating layers were obtained, of which the thickness was controlled by varying the $Ni^{2+}$ concentration in the plating bath. It was found that the Ni-P layer plays two important roles in improving the anodic performance of Sn powder electrode. First, it prevents the inter-particle aggregation between Sn particles during the charge/discharge process. Second, it provides an electrical conduction pathway to the Sn particles, which allows an electrode fabrication without an addition of conductive carbon. A pseudo-optimized sample showed a good cyclability and high capacity ($>400mAh\;g^{-1}$) even without conductive carbon loading.

Process and Characteristics of High Power Catalyst Electrode for PEM Fuel Cell

  • Chang H.;Lim C.;Kim J.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.171-175
    • /
    • 1999
  • Novel process for high power catalyst electrode for PEM fuel cell has been developed. MEA having this catalyst electrode showed $0.5W/cm^2\;with\;0.2mg/cm^2$ of Pt loading at aunospheric humid hydrogen and oxygen condition. In this process, platinized carbon and plain carbon powders were coated with ionomer (Nafion) and hydrophobic polymer (PTFE), respectively and it could maximize two roles of catalyst electrode, l.e., reaction and gas supplying component. Those polarization characteristics proved the improved performance by reducing potential drop especially in the concentration polarization region.

Synthesis and electrochemical performance of transition metal-coated carbon nanofibers as anode materials for lithium secondary batteries

  • Choi, Jin-Yeong;Hyun, Yura;Park, Heai-Ku;Lee, Chang-Seop
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.161-167
    • /
    • 2018
  • In this study, transition metal coated carbon nanofibers (CNFs) were synthesized and applied as anode materials of Li secondary batteries. CNFs/Ni foam was immersed into 0.01 M transition metal solutions after growing CNFs on Ni foam via chemical vapor deposition (CVD) method. Transition metal coated CNFs/Ni foam was dried in an oven at $80^{\circ}C$. Morphologies, compositions, and crystal quality of CNFs-transition metal composites were characterized by scanning electron microscopy (SEM), Raman spectroscopy (Raman), and X-ray photoelectron spectroscopy (XPS), respectively. Electrochemical characteristics of CNFs-transition metal composites as anodes of Li secondary batteries were investigated using a three-electrode cell. Transition metal/CNFs/Ni foam was directly employed as a working electrode without any binder. Lithium foil was used as both counter and reference electrodes while 1 M $LiClO_4$ was employed as the electrolyte after it was dissolved in a mixture of propylene carbonate:ethylene carbonate (PC:EC) at 1:1 volume ratio. Galvanostatic charge/discharge cycling and cyclic voltammetry measurements were taken at room temperature using a battery tester. In particular, the capacity of the synthesized CNFs-Fe was improved compared to that of CNFs. After 30 cycles, the capacity of CNFs-Fe was increased by 78%. Among four transition metals of Fe, Cu, Co and Ni coated on carbon nanofibers, the retention rate of CNFs-Fe was the highest at 41%. The initial capacity of CNFs-Fe with 670 mAh/g was reduced to 275 mAh/g after 30 cycles.

Supercapacitive properties of nickel sulfide coated titanium dioxide nanoparticles

  • Gang, Jin-Hyeon;Ryu, Il-Hwan;Hong, Da-Jeong;Kim, Geu-Rin;Im, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.156.1-156.1
    • /
    • 2016
  • Nickel sulfide (NiS) is one of the most promising candidates as an electrode material for supercapacitors due to its good capacitive properties, high electrical conductivity and low cost. In addition to the development of the new electrode materials, nanostructuring the electrode surface is one of the main issues in enhancing the capacitive performance of the supercapacitors because the increased surface area can improve the charge transfer and energy storage processes occurring at the electrode surface. However, most nanofabrication techniques require complicated and delicate nanoprocesses, and hence are not suitable for practical use. In this work, we developed a simple method to fabricate nanostructured NiS electrodes by depositing NiS onto $TiO_2$ nanoparticles. First, $TiO_2$ nanoparticles were spin-coated on a fluorine-doped tin oxide (FTO) substrate, and then NiS layers were deposited onto the $TiO_2$ nanoparticles by consecutive dip-coatings in the solutions containing nickel and sulfur precursors. This nanostructured NiS electrode showed significantly improved capacitive properties compared to the electrode of NiS films deposited without $TiO_2$ nanoparticles. The asymmetric full-cell supercapacitor with this nanostructured NiS electrode and activated carbon electrode was also fabricated and investigated.

  • PDF

Nonenzymatic Sensor Based on a Carbon Fiber Electrode Modified with Boron-Doped Diamond for Detection of Glucose (보론 도핑 다이아몬드로 표면처리된 탄소섬유 기반의 글루코스 검출용 비효소적 바이오센서)

  • Song, Min-Jung
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.606-610
    • /
    • 2019
  • In this study, we demonstrated that the nonenzymatic glucose sensor based on the flexible carbon fiber bundle electrode with BDD nanocomposites (CF-BDD electrode). As a nano seeding method for the deposition of BDD on flexible carbon fiber, electrostatic self-assembly technique was employed. Surface morphology of BDD coated carbon fiber electrode was observed by scanning electron microscopy. And the electrochemical characteristics were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. This CF-BDD electrode exhibited a large surface area, a direct electron transfer between the redox species and the electrode surface and a high catalytic activity, resulting in a wider linear range (3.75~50 mM), a faster response time (within 3 s) and a higher sensitivity (388.8 nA/mM) in comparison to a bare CF electrode. As a durable and flexible electrochemical sensing electrode, this brand new CF-BDD scheme has promising advantages on various electrochemical and wearable sensor applications.

Control of Surface Chemistry and Electrochemical Performance of Carbon-coated Silicon Anode Using Silane-based Self-Assembly for Rechargeable Lithium Batteries

  • Choi, Hyun;Nguyen, Cao Cuong;Song, Seung-Wan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2519-2526
    • /
    • 2010
  • Silane-based self-assembly was employed for the surface modification of carbon-coated Si electrodes and their surface chemistry and electrochemical performance in battery electrolyte depending on the molecular structure of silanes was studied. IR spectroscopic analyses revealed that siloxane formed from silane-based self-assembly possessed Si-O-Si network on the electrode surface and high surface coverage siloxane induced the formation of a stable solid-electrolyte interphase (SEI) layer that was mainly composed of organic compounds with alkyl and carboxylate metal salt functionalities, and PF-containing inorganic species. Scanning electron microscopy imaging showed that particle cracking were effectively reduced on the carbon-coated Si when having high coverage siloxane and thickened SEI layer, delivering > 1480 mAh/g over 200 cycles with enhanced capacity retention 74% of the maximum discharge capacity, in contrast to a rapid capacity fade with low coverage siloxane.

Synthesis and Electrochemical Performance of Polypyrrole-Coated Iron Oxide/Carbon Nanotube Composites

  • Kim, Dae-Won;Kim, Ki-Seok;Park, Soo-Jin
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.157-160
    • /
    • 2012
  • In this work, iron oxide ($Fe_3O_4$) nanoparticles were deposited on multi-walled carbon nanotubes (MWNTs) by a simple chemical coprecipitation method and $Fe_3O_4$-decorated MWNTs (Fe-MWNTs)/polypyrrole (PPy) nanocomposites (Fe-MWNTs/PPy) were prepared by oxidation polymerization. The effect of the PPy on the electrochemical properties of the Fe-MWNTs was investigated. The structures characteristics and surface properties of MWNTs, Fe-MWNTs, and Fe-MWNTs/PPy were characterized by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The electrochemical performances of MWNTs, Fe-MWNTs, and Fe-MWNTs/PPy were determined by cyclic voltammetry and galvanostatic charge/discharge characteristics in a 1.0 M sodium sulfite electrolyte. The results showed that the Fe-MWNTs/PPy electrode had typical pseudo-capacitive behavior and a specific capacitance significantly greater than that of the Fe-MWNT electrode, indicating an enhanced electrochemical performance of the Fe-MWNTs/PPy due to their high electrical properties.

Electrochemical Behavior of Norfloxacin and Its Determination at Poly(methyl red) Film Coated Glassy Carbon Electrode

  • Huang, Ke-Jing;Xu, Chun-Xuan;Xie, Wan-Zhen
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.988-992
    • /
    • 2008
  • A poly(methyl red) film-modified glassy carbon electrode (PMRE) was fabricated for determination of norfloxacin (NFX). The electrochemical behavior of NFX was investigated and a well-defined oxidation peak with high sensitivity was observed at the film electrode. PMRE greatly enhanced the oxidation peak current of NFX owing to the extraordinary properties of poly(methyl red) film. Based on this, a sensitive and simple voltammetric method was developed for measurement of NFX. A sensitive linear voltammetric response for NFX was obtained in the concentration range of $1\;{\times}\;10^{-6}\;-\;1\;{\times}\;10^{-4}$ mol/L and the detection limit was $1\;{\times}\;10^{-7}$ mol/L using linear sweep voltammetry (LSV). The proposed method possessed advantages such as low detection limit, fast response, low cost and simplicity. The practical application of this new analytical method was demonstrated with NFX pharmaceuticals.

Electrochemical Characteristics of DAAQ/CNFs electrode for Supercapacitor (슈퍼커패시터용 DAAQ/CNFs 전극의 전기화학적 특성)

  • Kim, Hong-Il;Choi, Weon-Kyung;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1184-1187
    • /
    • 2003
  • Electrochemical capacitors are becoming attractive energy storage systems particularly for applications involving high power requirements such as hybrid systems consisting of batteries and electrochemical capacitors for electric vehicle propulsion. A new type electric double layer capacitor (EDLC) was constructed by using carbon nanofibers (CNFs) and DAAQ(1,5-diaminoanthraquinone) electrode. Carbonaceous materials are found in variety forms such as graphite, diamond, carbon fibers etc. While all the carbon nanofibers include impurities such as amorphous carbon, nanoparticles, catalytic metals and incompletely grown carbons. We have eliminated of Ni particles and some carbonaceous particles in nitric acid. Nitric acid treated CNFs could be covered with very thin DAAQ oligomer from the results of CV and TG analyses and SEM images. DAAQ oligomer film exhibited a specific capacity as 45-50 Ah/kg in 4M $H_2SO_4$. We established Process Parameters of the technique for the formation of nano-structured materials. Furthermore, improved the capacitive properties of the nano structured CNFs electrodes using controlled solution chemistry. As a result, CNFs coated by DAAQ composite electrode showed relatively good electrochemical behaviors in acidic electrolyte system with respect to specific capacity and scan rate dependency.

  • PDF