DOI QR코드

DOI QR Code

Electrochemical Behavior of Norfloxacin and Its Determination at Poly(methyl red) Film Coated Glassy Carbon Electrode

  • Huang, Ke-Jing (College of Chemistry and Chemical Engineering, Xinyang Normal University) ;
  • Xu, Chun-Xuan (College of Chemistry and Chemical Engineering, Xinyang Normal University) ;
  • Xie, Wan-Zhen (College of Chemistry and Chemical Engineering, Xinyang Normal University)
  • Published : 2008.05.20

Abstract

A poly(methyl red) film-modified glassy carbon electrode (PMRE) was fabricated for determination of norfloxacin (NFX). The electrochemical behavior of NFX was investigated and a well-defined oxidation peak with high sensitivity was observed at the film electrode. PMRE greatly enhanced the oxidation peak current of NFX owing to the extraordinary properties of poly(methyl red) film. Based on this, a sensitive and simple voltammetric method was developed for measurement of NFX. A sensitive linear voltammetric response for NFX was obtained in the concentration range of $1\;{\times}\;10^{-6}\;-\;1\;{\times}\;10^{-4}$ mol/L and the detection limit was $1\;{\times}\;10^{-7}$ mol/L using linear sweep voltammetry (LSV). The proposed method possessed advantages such as low detection limit, fast response, low cost and simplicity. The practical application of this new analytical method was demonstrated with NFX pharmaceuticals.

Keywords

References

  1. Marians, K. J.; Hiasa, H. J. Biol. Chem. 1997, 272, 9401 https://doi.org/10.1074/jbc.272.14.9401
  2. Drlica, K. Curr. Opin. Microbiol. 1999, 2, 504 https://doi.org/10.1016/S1369-5274(99)00008-9
  3. Zeiler, H.; Croher, K. J. Microbiol. 1984, 3, 339
  4. Samanidou, V. F.; Demetriou, C. E.; Papadoyannis, I. N. Anal. Bioanal. Chem. 2003, 375, 623 https://doi.org/10.1007/s00216-003-1749-9
  5. Calucci, G.; Mazzeo, P.; Paumbo, G. Biomed. Chromatogr. 1993, 7, 123
  6. Delepine, B.; Hurtaud-Pessel, D.; Sanders, P. Analyst 1998, 123, 2743 https://doi.org/10.1039/a804911d
  7. Bhowal, S. K.; Das, T. K. Anal. Lett. 1991, 24, 25 https://doi.org/10.1080/00032719108052881
  8. Djurdjevic, P. T.; Jelikic-Stankov, M.; Stankov, D. Anal. Chim. Acta 1995, 300, 253 https://doi.org/10.1016/0003-2670(94)00378-Y
  9. Amin, A. S.; Elsayed, G. O.; Issa, Y. M. Analyst 1995, 120, 1189 https://doi.org/10.1039/an9952001189
  10. Rahman, N.; Ahmad, Y.; Hejaz Azmi, S. N. Eur. J. Pharm. Biopharm. 2004, 57, 359 https://doi.org/10.1016/S0939-6411(03)00192-9
  11. Veiopoulou, C. J.; Ioannou, P. C.; Lianidou, E. S. J. Pharm. Biomed. Anal. 1997, 15, 1839 https://doi.org/10.1016/S0731-7085(96)02041-9
  12. Espinosa-Mansilla, A.; Munoz de la Pena, A.; Salinas, F.; Gonzalez Gomez, D. Talanta 2004, 62, 853 https://doi.org/10.1016/j.talanta.2003.10.037
  13. Yorke, J. C.; Froc, P. J. Chromatogr. A 2000, 882, 63 https://doi.org/10.1016/S0021-9673(00)00165-5
  14. Espinosa-Mansilla, A.; Munoz de la Pena, A.; Gonzalez-Gomez, D.; Salinas, F. J. Chromatogr. B 2005, 822, 185 https://doi.org/10.1016/j.jchromb.2005.05.045
  15. Barron, D.; Jimenez-Lozano, E.; Bailac, S.; Barbosa, J. Analytica Chimica Acta 2003, 477, 21 https://doi.org/10.1016/S0003-2670(02)01398-3
  16. Barron, D.; Jimenez-Lozano, E.; Cano, J.; Barbosa, J. J. Chromatogr. B: Biomed. Sci. Appl. 2001, 759, 73 https://doi.org/10.1016/S0378-4347(01)00214-6
  17. Ghoneim, M. M.; Radi, A.; Beltagi, A. M. J. Pharm. Biomed. Anal. 2001, 25, 205 https://doi.org/10.1016/S0731-7085(00)00475-1
  18. Ni, Y. N.; Wang, Y. R.; Kokot, S. Talanta 2006, 69, 216 https://doi.org/10.1016/j.talanta.2005.09.032
  19. Park, H.; Kwon, T. G.; Park, D. S.; Shim, Y. B. Bull. Korean Chem. Soc. 2006, 27, 1763 https://doi.org/10.5012/bkcs.2006.27.11.1763
  20. Li, C. Y. Bull. Korean Chem. Soc. 2006, 27, 991 https://doi.org/10.5012/bkcs.2006.27.7.991
  21. Sandulescu, R.; Mirel, S.; Oprean, R. J. Pharm. Biomed. Anal. 2000, 23, 77 https://doi.org/10.1016/S0731-7085(00)00277-6
  22. Walily, A. F. M. E.; Belal, S. F.; Bakry, R. S. J. Pharm. Biomed. Anal. 1996, 14, 561 https://doi.org/10.1016/0731-7085(95)01662-7
  23. Cordoba-Borrego, M.; Cordoba-Díaz, M.; Cordoba-Diaz, D. J. Pharm. Biomed. Anal. 1999, 18, 919 https://doi.org/10.1016/S0731-7085(98)00037-5
  24. Alnajjar, A.; AbuSeada, H. H.; Idris, A. M. Talanta 2007, 72, 842 https://doi.org/10.1016/j.talanta.2006.11.025
  25. Reddy, M.; Balaji, K.; Reddy, S. J. J. Anal. Chem. 2007, 62, 168 https://doi.org/10.1134/S1061934807020128
  26. Zhang, S. H.; Wei, S. Bull. Korean Chem. Soc. 2006, 28, 543 https://doi.org/10.5012/bkcs.2007.28.4.543

Cited by

  1. Synthesis of Functionalized Core-Shell CdTe/ZnS Nanoparticles and Their Application as a Fluorescence Probe for Norfloxacin Determination vol.2013, pp.14, 2013, https://doi.org/10.1002/ejic.201201372
  2. Poly(Methyl Red) Modified Glassy Carbon Electrodes: Electrosynthesis, Characterization, and Sensor Behavior vol.29, pp.7, 2017, https://doi.org/10.1002/elan.201700043
  3. Study on the inclusion interaction of p-sulfonatocalix[n]arenes with norfloxacin vol.55, pp.5, 2017, https://doi.org/10.1080/00319104.2016.1250270
  4. Voltammetric/amperometric screening of compounds of pharmacological interest vol.33, pp.3, 2008, https://doi.org/10.1515/revac-2013-0027
  5. Voltammetric/amperometric screening of compounds of pharmacological interest vol.33, pp.3, 2008, https://doi.org/10.1515/revac-2013-0027
  6. Electrochemical Determination of Neomycin and Norfloxacin at a Novel Polymer Nanocomposite Electrode in Aqueous Solution vol.50, pp.12, 2008, https://doi.org/10.1080/00032719.2016.1261876
  7. A novel sulfur quantum dot for the detection of cobalt ions and norfloxacin as a fluorescent “switch” vol.48, pp.23, 2008, https://doi.org/10.1039/c9dt01186b
  8. Voltammetric and Impedimetric Detection of Norfloxacin at Co Nanoparticle Modified Polymer Composite Electrodes vol.32, pp.12, 2020, https://doi.org/10.1002/elan.202060423
  9. 3D flower-shaped BiOI encapsulated in molecularly imprinted polymer for hypersensitivity to norfloxacin vol.164, pp.None, 2021, https://doi.org/10.1016/j.microc.2021.106017