DOI QR코드

DOI QR Code

Synthesis and electrochemical performance of transition metal-coated carbon nanofibers as anode materials for lithium secondary batteries

  • Choi, Jin-Yeong (Department of Chemistry, Keimyung University) ;
  • Hyun, Yura (Department of Pharmaceutical Engineering, International University of Korea) ;
  • Park, Heai-Ku (Department of Chemical Engineering, Keimyung University) ;
  • Lee, Chang-Seop (Department of Chemistry, Keimyung University)
  • Received : 2018.01.05
  • Accepted : 2018.07.26
  • Published : 2018.12.25

Abstract

In this study, transition metal coated carbon nanofibers (CNFs) were synthesized and applied as anode materials of Li secondary batteries. CNFs/Ni foam was immersed into 0.01 M transition metal solutions after growing CNFs on Ni foam via chemical vapor deposition (CVD) method. Transition metal coated CNFs/Ni foam was dried in an oven at $80^{\circ}C$. Morphologies, compositions, and crystal quality of CNFs-transition metal composites were characterized by scanning electron microscopy (SEM), Raman spectroscopy (Raman), and X-ray photoelectron spectroscopy (XPS), respectively. Electrochemical characteristics of CNFs-transition metal composites as anodes of Li secondary batteries were investigated using a three-electrode cell. Transition metal/CNFs/Ni foam was directly employed as a working electrode without any binder. Lithium foil was used as both counter and reference electrodes while 1 M $LiClO_4$ was employed as the electrolyte after it was dissolved in a mixture of propylene carbonate:ethylene carbonate (PC:EC) at 1:1 volume ratio. Galvanostatic charge/discharge cycling and cyclic voltammetry measurements were taken at room temperature using a battery tester. In particular, the capacity of the synthesized CNFs-Fe was improved compared to that of CNFs. After 30 cycles, the capacity of CNFs-Fe was increased by 78%. Among four transition metals of Fe, Cu, Co and Ni coated on carbon nanofibers, the retention rate of CNFs-Fe was the highest at 41%. The initial capacity of CNFs-Fe with 670 mAh/g was reduced to 275 mAh/g after 30 cycles.

Keywords

Acknowledgement

Supported by : Keimyung University

References

  1. X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 319 (2008) 1229. https://doi.org/10.1126/science.1150878
  2. P.P. Prosini, C. Cento, F. Alessandrini, P. Gislon, A. Mancini, A. Rufoloni, F. Rondino, A. Santoni, Solid State Ionics 260 (2014) 49. https://doi.org/10.1016/j.ssi.2014.03.004
  3. J. Zhang, Z. Xie, W. Li, S. Dong, M. Qu, Carbon 74 (2014) 153. https://doi.org/10.1016/j.carbon.2014.03.017
  4. Y. Hyun, J.Y. Choi, H.K. Park, C.S. Lee, Appl. Surf. Sci. (2016) 274.
  5. M. Molenda, A. Chojnacka, M. Bakierska, R. Dziembaj, Mater. Technol. 29 (2014) A88. https://doi.org/10.1179/1753555714Y.0000000192
  6. X. Li, T. Li, X. Zhang, Q. Zhong, H. Li, J. Huang, Mater. Lett. 7 (5) (2014) 1450057.
  7. K. Deng, L. Li, Funct. Mater. Lett. 8 (4) (2015) 1530002. https://doi.org/10.1142/S1793604715300029
  8. H. Jamal, B.S. Kang, H. Lee, J.S. Yu, C.S. Lee, J. Ind. Eng. Chem. 64 (2018) 151. https://doi.org/10.1016/j.jiec.2018.03.012
  9. S.Y. Kim, K.S. Yang, B. Kim, J. Power Sources 273 (2015) 404. https://doi.org/10.1016/j.jpowsour.2014.09.109
  10. Y. Liu, K. Huang, Y. Fan, Q. Zhang, F. Sun, T. Gao, Z. Wang, J. Zhong, Electrochim. Acta 102 (2013) 246. https://doi.org/10.1016/j.electacta.2013.04.021
  11. G.Y. Seo, Understanding Nano Technology, SNU Press, 2011.
  12. J.J. Yang, J.H. Choi, H.J. Kim, M. Morita, S.G. Park, J. Ind. Eng. Chem. 19 (2013) 1648. https://doi.org/10.1016/j.jiec.2013.02.003
  13. Y. Xu, Y. Zhu, C. Wang, J. Mater. Chem. A 2 (2014) 9751. https://doi.org/10.1039/C4TA01691B
  14. S. Jang, J. Miyawaki, M. Tsuji, I. Mochida, S. Yoon, Carbon 47 (2009) 3383. https://doi.org/10.1016/j.carbon.2009.07.018
  15. N. Dimov, S. Kugino, M. Yoshio, Electrochim. Acta 48 (2003) 1579. https://doi.org/10.1016/S0013-4686(03)00030-6
  16. H. Liu, W. Qiao, Z. Liang, L. Ling, New Carbon Mater. 24 (2009) 124. https://doi.org/10.1016/S1872-5805(08)60042-6
  17. D.Y. Park, D.Y. Park, Y.S. Lim, M.S. Kim, J. Ind. Eng. Chem. 15 (2009) 588. https://doi.org/10.1016/j.jiec.2009.03.001
  18. G.H. Kim, S.H. Park, M.S. Birajdar, J.H. Lee, S.H. Hong, J. Ind. Eng. Chem. 52 (2017) 211. https://doi.org/10.1016/j.jiec.2017.03.046
  19. S. Zhang, Y. Li, G. Xu, S. Li, Y. Lu, O. Toprakci, X. Zhang, J. Power Sources 213 (2012) 10. https://doi.org/10.1016/j.jpowsour.2012.04.011
  20. C.H. Kim, B. Kim, Electrochim. Acta 117 (2014) 26. https://doi.org/10.1016/j.electacta.2013.11.082
  21. S. Choi, M.C. Kim, S.H. Moon, J.E. Lee, Y.K. Shin, E.S. Kim, K.W. Park, J. Ind. Eng. Chem. 64 (2018) 344. https://doi.org/10.1016/j.jiec.2018.03.035