• Title/Summary/Keyword: carbon waste

Search Result 932, Processing Time 0.036 seconds

Treatment of Malodorous Waste Air Containing Ammonia Using Biofilter System (바이오필터시스템을 이용한 암모니아 함유 악취폐가스 처리)

  • Lee, Eun Ju;Park, Sang Won;Nam, Dao Vinh;Chung, Chan Hong;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.391-396
    • /
    • 2010
  • In this research the characteristics of ammonia removal from malodorous waste-air were investigated under various operating condition of biofiilter packed with equal volume of rubber media and compost for the efficient removal of ammonia, representative source of malodor frequently generated at compost manufacturing factory and publicly owned facilities. Then the optimum conditions were constructed to treat waste-air containing ammonia with biofilter. Biofilter was run for 30 days(experimental frequency of 2 times/day makes 60 experimental times.) with the ammonia loading from $2.18g-N/m^3/h$ to $70g-N/m^3/h$ at $30^{\circ}C$. The ammonia removal efficiency reached almost 100% for I through IV stage of run to degrade up to the ammonia loading of $17g-N/m^3/h$. However the removal efficiency dropped to 80% when ammonia loading increased to $35g-N/m^3/h$, which makes the elimination capacity of ammonia $28g-N/m^3/h$ for V stage of run. However, the removal efficiency remained 80% and the maximum elimination capacity reached $55g-N/m^3/h$ when ammonia loading was doubled $70g-N/m^3/h$ for VI stage of run. Thus the maximum elimination capacity exceeded $1,200g-N/m^3/day$(i.e., $50g-N/m^3/h$) of the experiment of biofilter packed with rock wool inoculated with night soil sludge by Kim et al.. However, the critical loading did not exceed $810g-N/m^3/day$ (i.e., $33.75g-N/m^3/h$) of the biofilter experiment by Kim et al.. The reason to exceed the maximum elimination capacity of Kim et al. may be attributed to that the rubber media used as biofilter packing material provide the better environment for the fixation of nitrifying and denitrification bacteria to its surface coated with coconut based-activated carbon powder and well-developed inner-pores, respectively.

Removal Properties of Methylene Blue using Biochar Prepared from Street Tree Pruning Branches and Household Wood Waste (가로수 전정가지 및 생활계 폐목재를 이용하여 제조한 바이오차의 Methylene Blue 흡착특성)

  • Do, Ji-Young;Kim, Dong-Su;Park, Kyung-Chul;Park, Sam-Bae;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.3
    • /
    • pp.13-22
    • /
    • 2022
  • In order to improve water quality of the water system contaminated with dyes, biochars prepared using discarded waste resources were applied in this study. Biochars with a large specific surface area were manufactured using street tree pruning products or waste wood, and were applied to remove an organic dye in synthetic water. Biochars were made by pyrolysis of typical street tree porch products (Platanas, Ginkgo, Aak) and waste wood under air-controlled conditions. Methylene blue (MB), which is widely used in phosphofibers, paper, leather, and cotton media, was selected in this study. The adsorption capacity of Platanas for MB was the highest and the qmax value obtained using the Langmuir model equation was 78.47 mg/g. In addition, the adsorption energy (E) (kJ/mol) of MB using the Dubinin-Radushkevich (D-R) model equation was 4.891 kJ/mol which was less than 8 kJ/mol (a criteria distinguishing physical adsorption from chemical adsorption). This result suggests a physical adsorption with weak interactions such as van der Waals force between the biochar and MB. In addition, the physical adsorption may resulted from that Platanas-based biohar has the largest specific surface area and pore volume. The ∆G value obtained through the adsorption experiment according to temperature variation was -3.67 to -7.68, which also suggests a physical adsorption. Considering these adsorption results, the adsorption of MB onto Platanas-based biochar seems to occur through physical adsorption. Overall, it was possible to suggest that adsorption capacity of the biochr prepared from this study was equal to or greater than that of commercial activated carbon reported in other studies.

Studies on the Artificial Cultivation of Morchella esculenta in Ascomycetes (자낭균 곰보(Morchella esculenta)버섯의 인공재배에 관한 연구)

  • Kim, Han-Kyoung;Lee, Kang-Hyo;Cheong, Jong-Chun;Jhune, Chang-Sung;Seok, Sun-Ja;Jang, Kab-Yeul
    • Journal of Mushroom
    • /
    • v.7 no.1
    • /
    • pp.9-21
    • /
    • 2009
  • This study was executed in an attempt to investigate a artificial requisites of fruitbody occurrence. Environmental requirements on habitat for fruitbody occurrence of collected cultures resulted in leading to $13-16^{\circ}C$ and 75% relative humidity, and requiring silt loam of soil texture which had more nutritional substances than a dry field. Optimal temperature was $25^{\circ}C$, medium PDB, and pH 5.0 in cultural conditions. Mannose required of 5% in ASI 59002, 59003, 59004, but 3% in ASI 59001 was selected as optimum carbon source. The substrates stimulating sclerotium formation were cotton waste, or cotton waste + oak sawdust (mixture ratio of 8:2), which had 20% additive of wheat barn respectively. Sclerotium was formed well in the substrate adjusted chemical properties by applying 2% of calcium sulfate. Sclerotium formation was the most effective in the treatment of peat moss + oak sawdust (mixture ratio of 5:5) + 30% of wheat barn.

  • PDF

Thermophilic Anaerobic Biodegradability of Agro-industrial Biomass (농축산바이오매스 고온 혐기성 생분해도 평가)

  • Heo, Namhyo;Kang, Ho;Lee, Seungheon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.101-101
    • /
    • 2010
  • Anaerobic digestion(AD) is the most promising method for treating and recycling of different organic wastes, such as organic fraction of municipal solid waste, household wastes, animal manure, agro-industrial wastes, industrial organic wastes and sewage sludge. During AD, i.e. organic materials are decomposed by anaerobic forming bacteria and fina1ly converted to excellent fertilizer and biogas which is a mixture of carbon dioxide and methane. AD has been one of the leading technologies that can make a large contribution to produce renewable energy and to reduce $CO_2$ and other green-house gas(GHG) emission, it is becoming a key method for both waste treatment and recovery of a renewable fuel and other valuable co-products. Currently some 80% of the world's overall energy supply of about 400 EJ per year in derived from fossil fuels. Nevertheless roughly 10~15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. The representative biofuels produced from the biomass are bioethanol, biodiesel and biogas, and currently biogas plays a smaller than other biofuels but steadily growing role. Traditionally anaerobic digestion applied for different biowaste e.g. sewage sludge, manure, other organic wastes treatment and stabilization, biogas has become a well established energy resource. However, the biowaste are fairly limited in respect to the production and utilization as renewable source, but the plant biomass, the so called "energy crops" are used for more biogas production in EU countries and the investigation on the biomethane potential of different crops and plant materials have been carried out. In Korea, with steadily increasing oil prices and improved environmental regulations, since 2005 anaerobic digestion was again stimulated, especially on the biogasification of different biowastes and agro-industrial biomass including "energy crops". This study have been carried out to investigate anaerobic biodegradability by the biochemical methane potential(BMP) test of animal manures, different forage crops i.e. "energy crops", plant and industrial organic wastes in the condition of thermophilic temperature, The biodegradability of animal manure were 63.2% and 58.2% with $315m^3CH_4/tonVS$ of cattle slurry and $370m^3CH_4/tonVS$ of pig slurry in ultimate methane yields. Those of winter forage crops were the range 75% to 87% with ultimate methane yield of $378m^3CH_4/tonVS$ to $450m^3CH_4/tonVS$ and those of summer forage crops were the range 81% to 85% with ultimate methane yield of $392m^3CH_4/tonVS$ to $415m^3CH_4/tonVS$. The forge crops as "energy crops" could be used as good renewable energy source to increase methane production and to improve biodegradability in co-digestion with animal manure or only energy crop digestion.

  • PDF

Gasification of Woody Waste in a Two-Stage Fluidized Bed Varying the Upper-reactor Temperature and Equivalence Ratio (상부온도(上部溫度)와 공기비(空氣比) 변화(變化)에 따른 폐목재(廢木材)의 이단(二段) 유동층(流動層)가스화(化))

  • Mun, Tae-Young;Kim, Jin-O;Kim, Jin-Won;Kim, Joo-Sik
    • Resources Recycling
    • /
    • v.19 no.2
    • /
    • pp.45-53
    • /
    • 2010
  • During the biomass gasification, tar generation is typically accompanied, which causes many problems, such as pipe plugging and equipment fouling. In the experiments, activated carbon was applied to the upper reactor of the two-stage gasifier in order to remove the tar generated during gasification. In addition, the effects of the upper-reactor temperature and equivalence ratio on the producer gas characteristics (composition, tar content and lower heating value) were investigated. To investigate the effect of the upper reactor-temperature, experiments were performed at 743, 793, $838^{\circ}C$, respectively. To examine the influence of the equivalence ratio, a comparison experiment was carried out at a equivalence ratio of 0.17. In all experiments, tar contents in the producer gases were below $2mg/Nm^3$. The maximum LHV of the producer gas was above $10MJ/Nm^3$, which is much higher than the typical LHV($3\sim6MJ/Nm^3$) in the air gasification of biomass.

Diagnosis of Water Environment and Assessment of Water Quality Restoration in Lake Shihwa (시화호의 수환경 진단과 수질회복 평가)

  • Kim, Dong-Seop;Go, Seok-Gu
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.5
    • /
    • pp.551-559
    • /
    • 2000
  • In order to diagnose the water environment and assess the water quality restoration, long term trend of water environment has been surveyed at 3-R stations from 1994 to 1999 in Lake Shihwa. Annual mean values of $COD_{Mn}$, Chlorophyll a, total nitrogen, total phosphorus and Secchi depth are ranged in 5.2-15.1 mg/L, 7.3-14R.1 jlg/L, 1.50-4.84 mgN/L, 0.055-0.281 mgP/L and 0.5 -1.4 m, respectively, during the study periods. Carson's trophic state indeies were varied from mesotrophy in 1994 and 1995, hyper-eutrophy in 1996 and 1997, to meso eutrophy in 199R and 1999. After dike construction, water quality were rapidly deteriorated by allochthonous and autochthonous loading of high nutrients and organic carbon. Eutrophication phenomena were characterized by massive phytoplankton blooms and high concentration of COD. However, after onset of restoration program, lake water quality was rapidly restored to the level of just after sea-dike construction. The diversion of waste water inflowing from the Panwol and the Sihwa industrial districts which was started from March, 1997 has contributed to improve water quality in the surface layer. And the tidal mixing (sea water inflowing) through the continuous gate operation was the most effective measure to the whole lake restoration.ration.

  • PDF

Determination of Volatile Organic Compounds emitted from Municipal Solid Waste Landfill Site by Thermal Desorption-Cryofocusing-GC/FID/FPD (열탈착-저온농축-GC/FID/FPD에 의한 도시 생활폐기물 매립장에서 방출되는 휘발성 유기화합물의 측정에 관한 연구)

  • Kim, Man-Goo;Jung, Young-Rim;Seo, Young-Min;Nam, Sung-Hyun;Kwon, Young-Jin
    • Analytical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.274-285
    • /
    • 2001
  • In this study, the thermal desorption-cryofocusing-gas chromatographic(TD-C-GC) method was developed for determination of volatile organic compounds(VOCs) in ambient air and was applied at the municipal solid waste landfill sites. On-column cryofocusing was possible only with a 100 ml dewars bottle in TD-C-GC method with a stainless steel column. However, high operating pressure was needed for purging VOCs from the absorbent trap, which was able to solve by pressure programming with a electric pressure controller. By using both pressure and temperature programming brought increasing of resolution power in on-column cryofocusing method, but the high pressure caused a leakage of sample tube with repeated use. A loop cryofocusing devise was also developed and compared with the direct on-column method. In loop cryofocusing method, VOCs were concentrated on a 0.8mm i.d. loop which is located between the injector and separation column by using liquid nitrogen. In order to purge VOCs from the absorbent trap, only 0.4 psi of pressure was need in the loop cryofocusing method. Dual detection system was applied for the analysis of VOCs; a FID was used for hydrocarbons and a FPD was used for sulfur-containing compounds. Qualitative analysis was done by on-column cryofocusing GC-MS system. Among the large number of VOCs, toluene was the most abundant. Hydrogen sulfide, dimethyl sulfide, carbon disulfide, dimethyl disulfide and methyl propyl disulfide were detected at landfill site by FPD.

  • PDF

The Mineral Carbonation Using Steelmaking Reduction Slag (제강 환원슬래그의 광물탄산화)

  • Ryu, Kyoung-Won;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • Mineral carbonation for the storage of carbon dioxide is a CCS option that provides an alternative for the more widely advocated method of geological storage in underground formation. Carbonation of magnesium- or calcium-based minerals, especially the carbonation of waste materials and industrial by-products is expanding, even though total amounts of the industrial waste are too small to substantially reduce the $CO_2$ emissions. The mineral carbonation was performed with steelmaking reduction slag as starting material. The steelmaking reduction slag dissolution experiments were conducted in the $H_2SO_4$ and $NH_4NO_3$ solution with concentration range of 0.3 to 1 M at $100^{\circ}C$ and $150^{\circ}C$. The hydrothermal treatment was performed to the starting material via a modified direct aqueous carbonation process at the same leaching temperature. The initial pH of the solution was adjusted to 12 and $CO_2$ partial pressure was 1MPa for the carbonation. The carbonation rate after extracting $Ca^^{2+}$ under $NH_4NO_3$ was higher than that under $H_2SO_4$ and the carbonation rates in 1M $NH_4NO_3$ solution at $150^{\circ}C$ was dramatically enhanced about 93%. In this condition well-faceted rhombohedral calcite, and rod or flower-shaped aragonite were appeared together in products. As the concentration of $H_2SO_4$ increased, the formation of gypsum was predominant and the carbonation rate decreased sharply. Therefore it is considered that the selection of the leaching solution which does not affect the starting material is important in the carbonation reaction.

Biofilter Model for Robust Biofilter Design: 1. Adsorption Behavior of the Media of Biofilter (강인한 바이오필터설계를 위한 바이오필터모델: 1. 바이오필터 담체의 흡착거동)

  • Lee, Eun Ju;Seo, Kyo Seong;Jeon, Wui-Sook;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.149-154
    • /
    • 2012
  • The adsorption and desorption behavior of biofilter-medium was investigated on the performance of an adsorption column. Continuous flow-isothermal adsorption experiments were performed to treat waste air containing such a VOC as ethanol under the same condition of > 90% relative humidity as the condition of the feed to a biofilter process. In case of feeding waste air containing ethanol of 1,000 ppmv (or 2,050 mg ethanol/$m^3$) to the adsorption system at the rate of 2 L/min, the onsets of its breakthrough and reaching the state of dynamic equilibrium at the exit had been delayed 10 and 3 times, respectively, later than those at the 1st stage sampling port. Moreover, in case of 2,000 ppmv (or 4,100 mg ethanol/$m^3$), they had been delayed 9 and 3 times, respectively. Thus, regardless of feeding concentration, the ratios of delaying period were observed to be quite consistent each other at the exit of the adsorption column. With regard to the period of desorption, the ratios of delaying period were consistent each other to be 1.5 for both cases. In addition, the effect of microbial activity and sterilization-process was studied on adsorption equilibrium. The ethanol concentration in the vapor phase of vials packed with sterilized granular activated carbon (GAC) was quite consistent to that with unsterilized GAC. However, the ethanol concentrations in the vapor phase of vials packed with unsterilized compost and the unsterilized mixture of GAC and compost were higher than those with sterilized compost and the sterilized mixture of GAC and compost, respectively.

Studies on the Production of Fermented Feeds from Agricultural Waste Products (Part Ⅲ) -On the Production of Cellulase by Aspergillus niger and Trichoderma viride- (농산폐기물(農産廢棄物)에서 발효사료(醱酵飼料)의 생산(生産)에 관(關)한 연구(硏究)[제3보(第三報)] -Aspergillus niger와 Trichoderma viride에 의(依)한 Cellulase의 생산성(生産性)에 관(關)하여-)

  • Lee, Ke-Ho;Koh, Jeong-Sam;Park, Sung-O
    • Applied Biological Chemistry
    • /
    • v.19 no.3
    • /
    • pp.130-138
    • /
    • 1976
  • In order to utilize the agricultural waste products, two strains of mold producing powerful cellulolytic enzyme were sereened from various soils, composts, rotten wood and others. The optimum condition of cellulase production was studied. The results obtained were summarized as follows. 1. Two strains of mold which showed remarkably high cellulolytic activity were identified as Aspergillus niger-SM 6 and Trichoderma viride-SM 10. 2. The highest cellulase production was obtained at pH 5.0-6.0 in 5 days. 3. Cellulase production in strain Aspergillus niger-SM 6 increased with the addition of C.M.C., $(NH_4)_2SO_4$, C.S.L., orange peel powder and rice hull. The rice hull, treated with 3N NaOH at $120^{\circ}C$ for 15 min. and neutralized with various acids, was used. Up to 50% of wheat bran could be substituted by the treated rice hull without any decrease of cellulase activity. 4. In the strain of Trichoderma viride-SM 10, cellulase production increased with the addition of C.M.C., $NH_4NO_3$, Vitamin-free casamino acid and orange peel powder, while the other carbon, nitrogen, phosphate sources, natural nutrients and organic substances gave no remarkable effect.

  • PDF