• Title/Summary/Keyword: carbon waste

Search Result 932, Processing Time 0.022 seconds

A basic study on the production of an integrated lightweight concrete solar panel using recycled waste resources (폐자원을 재활용한 일체형 경량 콘크리트 태양광패널 제작에 관한 기초적 연구반복)

  • Lee, Kook-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.168-169
    • /
    • 2022
  • The continuous development of science and technology since the Industrial Revolution and the development of human civilization are based on the use of fossil fuels. However, the use of fossil fuels is increasing the greenhouse gas, the main cause of global warming, and global warming is an extreme climate anomaly that is rapidly increasing human and material damage. Therefore, efforts are being made worldwide to return greenhouse gases to pre-industrial levels. In Korea, 2050 carbon neutrality has been set as a major policy and efforts are being made to curb carbon emissions in the overall industry. Carbon emission suppression is based on the minimization of fossil fuel use, and research and development are underway on building a zero-emission house that minimizes the energy used in buildings in the construction field. Therefore, in this study, as part of the zero-emissions water system construction, waste resources generated at industrial sites were utilized and an integrated lightweight concrete solar panel grafted with a concrete lightweight panel and solar panel was manufactured and the possibility of its use was evaluated.

  • PDF

Electrosorption of Uranium Ions in Liquid Waste

  • Lee, Hye-Young;Jung, Chong-Hun;Oh, Won-Zin;Park, Jin-Ho;Shul, Yong-Gun
    • Carbon letters
    • /
    • v.4 no.2
    • /
    • pp.64-68
    • /
    • 2003
  • A study on the electrosorption of uranium ions onto a porous activated carbon fiber (ACF) was performed to treat uraniumcontaining lagoon sludge. The result of the continuous flow-through cell electrosorption experiments showed that the applied negative potential increased the adsorption kinetics and capacity in comparison to the open-circuit potential (OCP) adsorption for uranium ions. Effective U(VI) removal is accomplished when a negative potential is applied to the activated carbon fiber (ACF) electrode. For a feed concentration of 100 mg/L, the concentration of U(VI) in the cell effluent is reduced to less than 1 mg/L. The selective removal of uranium ions from electrolyte was possible by the electrosorption process.

  • PDF

Adsorption of cationic dye (MB) and anionic dye (AG 25) by physically and chemically activated carbons developed from rice husk

  • Youssef, A.M.;Ahmed, A.I.;El-Bana, U.A.
    • Carbon letters
    • /
    • v.13 no.2
    • /
    • pp.61-72
    • /
    • 2012
  • Dye removal from waste water via adsorption by activated carbons (ACs) developed from agricultural wastes represents an ideal alternative to other expensive treatment options. Physical and chemical ACs were prepared from rice husks. The textural properties of the ACs were characterized by Brunauer-Emmett-Teller-$N_2$ adsorption and scanning electron microscopy. The chemistry of the carbon surface was investigated by Fourier transform infrared spectroscopy, base and acid neutralization capacities, pH of the active carbon slurry, and $pH_{pzc}$. The adsorption capacities of the ACs for the basic dye (methylene blue) and acid dye (acid green 25) were determined using parameters such as contact time, pH, and temperature. NaOH-ACs showed the highest surface area and total pore volume, whereas steam-ACs showed the lowest ones.

Utilization of Waste Concrete Powder from the Viewpoint of LCA CO2 (LCA CO2 관점에서의 콘크리트 폐석분의 활용방안)

  • Song, Hun;Shin, Hyeon-Uk;Chu, Yong-Sik;Lee, Jong-Kyu;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.209-210
    • /
    • 2012
  • Cement is an essential material for social infrastructure. Cement production process for cement itself is energy-intensive and requires a large amount of natural resources for fuel and raw materials. This study is to development of recycled cement from waste concrete powder in manufacturing process of recycled aggregate concrete. Recycled cement is low carbon and green growth materials concept for eco friendly construction environment. From the test results, waste concrete powder is same chemical proportion regardless of manufacturing process of recycled aggregate concrete.

  • PDF

Characteristics of $H_2$/CO ratio control of syngas by waste gasification (폐기물 가스화 합성가스의 $H_2$/CO 생산비 제어 특성)

  • Gu, Jae-Hoi;Kim, Su-Hyun;Kim, Mun-Hyun;Choi, Jong-Hyea;Heo, Su-Jung;Yoon, Ki-Soo;Kim, Soung-Hyoun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.475-478
    • /
    • 2008
  • The 3 ton/day-scale pilot plant consists of waste press, feed channel, fixed bed type gasification & melting furnace, quench scrubber, syngas refinery facility and flare stack. $H_2$/CO ratio of gasification syngas using the solid waste and sludge in the 3 ton/day gasifier showed about 1. Gasification melting furnace was operated $1,300{\sim}1,600^{\circ}C$. $H_2$/CO ration control system was obtained $H_2$/CO ratio 2 and 3.

  • PDF

A Study on characteristics of AUC Powder Prepared with the Waste AC Solution (폐 AC용액으로부터 제조된 AUC분말의 특성에 대한 연구)

  • 정경채;김태준;최종현;박진호
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.3
    • /
    • pp.332-338
    • /
    • 1996
  • This study was investigated on the recycle feasibility of the waste AC(Ammonium Carbonate) solution produ-ced in a commercial AUC(Ammonium Uranyl Carbonate) conversion plant. AUC particles were produced with the AC solution which was prepared with AC solid-agent instead of ammonia and carbon-dioxide gases. As the results particles of monoclinic shapes has been obtained regardless of the pH change if the carbonate concentration is sufficient in the mother liquore. Also a lot of twinned or aggregated particles were formed in case of the increase of pH in the reaction system but not affected in the change of temperature. Consequen-tly the characteristics of the particles which converted for AUC were produced withAC solution to UO2, particles specific surface area shape sintered density and others were similar to that of the particles which were produced with gases only when the pellets are fabricated in the nuclear fuel manufacturing process So the waste AC solution which is produced in the commercial AUC conversion plant is possible to recycle.

  • PDF