• Title/Summary/Keyword: carbon transport

Search Result 511, Processing Time 0.025 seconds

Assesment of Indoor Air Quality within Public Transport Vehicles operating in specified locations throughout Seoul (서울 일부 지역 교통수단의 실내 공기질 평가)

  • Sohn Jong-Ryeul;Choi Dal-Woong;Choi Jung-Sook;Woo Wan-Gi
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.1 s.59
    • /
    • pp.12-20
    • /
    • 2006
  • This paper was conducted concerning the degree of indoor air quality in public transport vehicles such as taxicabs, buses and subway trains, as sampled through the active participation of drivers and passengers in Seoul between 13th August 2005 and 2nd November 2005. The results were summarized as follows: 1. Among the measured substances especially respirable particulate matters ($PM_{10}$), total bacteria counts (TBC) and carbon dioxide ($CO_2$) exceeded the standard level of $150{\mu}g/m^3,\;800CFU/m^3$ and 1000ppm. 2. The concentration of carbon dioxide ($CO_2$) in taxi recorded 2491ppm, which is more than the standard amount of 1000ppm. This level was comparatively higher than all other public transportation methods. Total bacteria counts (TBC) in bus and subway recorded $1082CFU/m^3\;and\;1856CFU/m^3$, respectively. 3. The drivers who regularly work long hours showed the higher concern about contamination of the air inside the public transport vehicles and they considered it to be worse than the air outside. In contrast, the general public showed less concern about the air quality inside the public transport vehicles. However, they too acknowledged that the quality of the air inside the public transport vehicles was poor. In regards to the degree of indoor air quality in the public transport vehicles, a counterplan must be implemented urgently to effectively combat the excessive levels of $PM_{10}$, microorganism and $CO_2$. We need to gather more conclusive evidence pertaining to other possible contaminants and influencing factors.

Study on Comparison of Nenewable Fuel Standard Policy on Global (해외 신재생연료 의무혼합제도 비교분석 연구)

  • Lim, Eui Soon;Kim, Jae-Kon;Jung, Choong-Sub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.150.1-150.1
    • /
    • 2011
  • The global rise of greenhouse gas(GHG) emissions and its potentially devastating consequences require a comprehensive regulatory framework for reducing emissions, including those from the transport sector. alternative fuels and technologies have been promoted as a means for reducing the carbon intensity of the transport sector. Renewable fuel policies were historically motivated by energy security concerns, and to promoted agricultural industries. In the last decade, biofuels have also been discussed as low or net-zero carbon soures of energy for transportation. Hence, the development of biofuels has been supported by a range of policy instruments, including volumetric targets or blending mandates, tax incentives or penalties, preferential government purchasing, government funded research, development in world-wide. As one of the most powerfuel instruments, renewable fuel mandates require fuel producers to produce a pre-defined amount(or share) of biofuels and blend them with petroleum fuel. In this study, we reviewed Renewable Fuel Standard(RFS, USA), Renewable Transport Fules Obligation (RTFO, UK) as a renewable fuel mandate policy to reduce GHG. This includes not only mandate system for blending of biofuels in transport fuels, but also sustainability to use biofuels in this system.

  • PDF

Molecular dynamics study on initial growth behavior of amorphous carbon film under various incidence angles

  • Joe, Min-Woong;Moon, Myoung-Woon;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.310-310
    • /
    • 2011
  • Morphological evolution of amorphous carbon film is investigated by molecular dynamics simulation. Here, energetic carbon atoms (75 eV) are deposited on the diamond (001) substrate to find effect of incidence angles. At normal and near-normal incidences ($0^{\circ}{\sim}30^{\circ}$) atomically smooth surfaces are observed during their growth. However, rough surfaces emerge and develop into a ripple structure at grazing incidences ($60^{\circ}{\sim}70^{\circ}$). The different growth modes according to the incidence angles can be described by impact-induced displacements of atoms. Downhill transport along any sloped surfaces is predominant for the case of normal incidence. As the incidence angles become grazing, uphill transport is allowed along the surfaces, which have smaller slopes than incidence angle, so the surface features can be amplified. Impact-induced transport and self-shadowing effect can be responsible to the initial growth of seeding structures at a grazing incidence, which would be grown up as tilted columnar structures in further depositions.

  • PDF

Development of a Simulator for the Intermediate Storage Hub Selection Modeling and Visualization of Carbon Dioxide Transport Using a Pipeline (파이프라인을 이용한 이산화탄소 수송에서 중간 저장 허브 선정 모델링 및 시각화를 위한 시뮬레이터 개발)

  • Lee, Ji-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.12
    • /
    • pp.373-382
    • /
    • 2016
  • Carbon dioxide Capture and Storage/Sequestration (CCS) technology has attracted attention as an ideal method for most carbon dioxide reduction needs. When the collected carbon dioxide is transported to storage via pipelines, the direct transport is made if the storage is close, otherwise it can also be transported via an intermediate storage hub. Determining the number and the location of the intermediate storage hubs is an important problem. A decision-making algorithm using a mathematical model for solving the problem requires considerably more variables and constraints to describe the multi-objective decision, but the computational complexity of the problem increases and it also does not guarantee the optimality. This research proposes an algorithm to determine the location and the number of the intermediate storage hub and develop a simulator for the connection network of the carbon dioxide emission site. The simulator also provides the course of transportation of the carbon dioxide. As a case study, this model is applied to Korea.

Morphology control of glassy carbon coating layer to additive ethylene glycol and phenolic resin (페놀수지 및 에틸렌 글리콜을 첨가한 유리질 카본 코팅층의 물성 제어)

  • Joo, Sang Hyun;Joo, Young Jun;Lee, Hyuk Jun;Sim, Young Jin;Park, Dong Jin;Cho, Kwang Youn
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.3
    • /
    • pp.89-95
    • /
    • 2022
  • In this study, glassy carbon coating was performed on the graphite using a phenolic resin and a curing agent was mixed with ethylene glycol as an additive to form the uniform surface. The phenolic resin was dried and cured under the environments of hot air, then converted into a glassy carbon layer by pyrolysis at 500~1,500℃. FTIR, XRD, SEM analysis, and density/porosity/contact angle measurement were performed for characterization of glassy carbon. The pyrolysis temperature for high-quality glassy carbon was optimized to be about 1,000℃. As the content of the additive increased, the effect of reducing surface defects on the coated surface, reduction of porosity, increase of contact angle, and increase of density were investigated in this study. The method of forming a glassy carbon coating layer through an additive is expected to be applicable to graphite coating and other fields.

Contact resistance in graphene channel transistors

  • Song, Seung Min;Cho, Byung Jin
    • Carbon letters
    • /
    • v.14 no.3
    • /
    • pp.162-170
    • /
    • 2013
  • The performance of graphene-based electronic devices is critically affected by the quality of the graphene-metal contact. The understanding of graphene-metal is therefore critical for the successful development of graphene-based electronic devices, especially field-effect-transistors. Here, we provide a review of the peculiar properties of graphene-metal contacts, including work function pinning, the charge transport mechanism, the impact of the process on the contract resistance, and other factors.

Field-effect Ion-transport Devices with Carbon Nanotube Channels: Schematics and Simulations

  • Kwon Oh Kuen;Kwon Jun Sik;Hwang Ho Jung;Kang Jeong Won
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.787-791
    • /
    • 2004
  • We investigated field-effect ion-transport devices based on carbon nanotubes by using classical molecular dynamics simulations under applied external force fields, and we present model schematics that car be applied to the nanoscale data storage devices and unipolar ionic field-effect transistors. As the applied external force field is increased, potassium ions rapidly flow through the nanochannel. Under low external force fields, ther nal fluctuations of the nanochannels affect tunneling of the potassium ions whereas the effects of thermal fluctuations are negligible under high external force fields. Since the electric current conductivity increases when potassium ions are inserted into fullerenes or carbon nanotubes, the field effect due to the gate, which can modify the position of the potassium ions, changes the tunneling current between the drain and the source.

  • PDF

Dependence of Total and Carbonaceous Aerosol Concentrations on Transport Pathways in Seoul, Korea (공기 궤 유입경로에 따른 한반도 서울 상공의 전체 및 유기 에어로졸 농도 변화 분석)

  • Jeong, Ukkeo;Kim, Jhoon;Kim, Young J.;Jung, Jinsang
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.141-148
    • /
    • 2015
  • Recently increased anthropogenic aerosols change the radiative energy balance and affect human life. The management of air quality requires monitoring both the local emissions and transported pollutants. In order to estimate the quantitative contribution of long-range transport from remote sources on aerosol concentrations in Seoul, the airmasses were classified into five types with respect to their pathways. When airmass came from west over strong emission regions in China, high concentrations of $PM_{10}$, $PM_{2.5}$, black carbon (BC), organic carbon (OC), and elemental carbon (EC) were found, even higher than those for the stagnated airmass. High OC concentrations were found when airmass came from north while BC, EC, and $PM_{2.5}$ concentrations were lower than those of the stagnated airmasses. During dust events, the $PM_{2.5}$ and $PM_{10}$ concentrations increased significantly while carbonaceous aerosol concentrations did not increased. The temporal variations of aerosol concentrations in Seoul were affected by the seasonal variations of airmass pathways. The high $PM_{2.5}$ concentrations over $100{\mu}g\;m^{-3}$ appeared most frequently when the airmasses came from west.

Influences of Air Trajectories on the Variations of Carbon Monoxide in Major Cities in Korea for the Year of 1999 (1999년 기류의 이동궤적에 따른 우리나라 주요 도시의 일산화탄소 농도 변화)

  • 김영성;김영주;김진영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.6
    • /
    • pp.451-461
    • /
    • 2001
  • Backward trajectories were calculated from five urban areas in Korea in 1999 in order to assess the effects of long-range transport on the air quality variations on an annual basis. The five areas selected were Seoul, Mokpo, Cheju, Pohang, and Kangnung, which are evenly distributed along the shoreline in Korea. Meteorological fields used in the work were prepared by the Korea Meteorological Administration using the RDAPS(Regional Data Assimilation and Prediction System) with grid spacing of 40 km and 12-h intervals(0000 and 1200 UTC). Upwind regions around the Korean Peninsula were divided into five sectors including the region to the northeast(I), northern China (II), southern China(III), the northwestern Pacific(IV), and Japan(V). The influence of air flow from these sectors on the variations of carbon monoxide concentrations in the selected areas was investigated. The results showed that the influences of Sectors II and III were persistent although some influences of adjacent sectors were observed according to the location of the areas. In general, the concentration of carbon monoxide tended to go up under the influence of Sectors II and III but tended to go down under the influence of Sector I. However, the influences of other sectors were rather mixed. The importance of the long-range transport was examined when the whole country was uniformly influenced by Sectors II and III with strong synoptic winds. The effects of long-range transport were large in Mokpo and Cheju, close to Sectors II and III, where the local emissions were considered small. The effects of local emissions were significant in Pohang and Seoul; such effect was more distinct in Pohang located farther from Sectors II and III.

  • PDF

Electron transport properties of Y-type zigzag branched carbon nanotubes

  • MaoSheng Ye;HangKong, OuYang;YiNi Lin;Quan Ynag;QingYang Xu;Tao Chen;LiNing Sun;Li Ma
    • Advances in nano research
    • /
    • v.15 no.3
    • /
    • pp.263-275
    • /
    • 2023
  • The electron transport properties of Y-type zigzag branched carbon nanotubes (CNTs) are of great significance for micro and nano carbon-based electronic devices and their interconnection. Based on the semi-empirical method combining tight-binding density functional theory and non-equilibrium Green's function, the electron transport properties between the branches of Y-type zigzag branched CNT are studied. The results show that the drain-source current of semiconducting Y-type zigzag branched CNT (8, 0)-(4, 0)-(4, 0) is cut-off and not affected by the gate voltage in a bias voltage range [-0.5 V, 0.5 V]. The current presents a nonlinear change in a bias voltage range [-1.5 V, -0.5 V] and [0.5 V, 1.5 V]. The tangent slope of the current-voltage curve can be changed by the gate voltage to realize the regulation of the current. The regulation effect under negative bias voltage is more significant. For the larger diameter semiconducting Y-type zigzag branched CNT (10, 0)-(5, 0)-(5, 0), only the value of drain-source current increases due to the larger diameter. For metallic Y-type zigzag branched CNT (12, 0)-(6, 0)-(6, 0), the drain-source current presents a linear change in a bias voltage range [-1.5 V, 1.5 V] and is symmetrical about (0, 0). The slope of current-voltage line can be changed by the gate voltage to realize the regulation of the current. For three kinds of Y-type zigzag branched CNT with different diameters and different conductivity, the current-voltage curve trend changes from decline to rise when the branch of drain-source is exchanged. The current regulation effect of semiconducting Y-type zigzag branched CNT under negative bias voltage is also more significant.