DOI QR코드

DOI QR Code

Development of a Simulator for the Intermediate Storage Hub Selection Modeling and Visualization of Carbon Dioxide Transport Using a Pipeline

파이프라인을 이용한 이산화탄소 수송에서 중간 저장 허브 선정 모델링 및 시각화를 위한 시뮬레이터 개발

  • 이지용 (한국과학기술원 산업 및 시스템 공학과)
  • Received : 2016.05.16
  • Accepted : 2016.10.05
  • Published : 2016.12.28

Abstract

Carbon dioxide Capture and Storage/Sequestration (CCS) technology has attracted attention as an ideal method for most carbon dioxide reduction needs. When the collected carbon dioxide is transported to storage via pipelines, the direct transport is made if the storage is close, otherwise it can also be transported via an intermediate storage hub. Determining the number and the location of the intermediate storage hubs is an important problem. A decision-making algorithm using a mathematical model for solving the problem requires considerably more variables and constraints to describe the multi-objective decision, but the computational complexity of the problem increases and it also does not guarantee the optimality. This research proposes an algorithm to determine the location and the number of the intermediate storage hub and develop a simulator for the connection network of the carbon dioxide emission site. The simulator also provides the course of transportation of the carbon dioxide. As a case study, this model is applied to Korea.

이산화탄소 포집 및 저장 / 격리 (CCS) 기술은 많은 이산화탄소 저감 방법 중 이상적인 방법으로 주목 받고 있다. 이산화탄소를 포집해서 파이프라인을 통해 저장소까지 수송할 때, 저장소가 가까운 경우 직접 수송할 수도 있지만, 중간 저장의 역할을 하는 허브를 거쳐 수송할 수도 있다. 허브의 수와 위치를 결정하는 것은 중요한 문제이다. 다목적 의사 결정을 위한 수학 모델은 많은 제약식과 목적식을 수반하는데, 문제의 계산 복잡도가 증가하지만 항상 최적을 보장하지 않는다. 본 연구에서는, 이산화탄소 수송망에서 중간 저장 허브의 위치와 수를 결정하는 알고리즘을 제안하고, 이를 활용하여 이산화탄소 발생지의 연결 네트워크 시뮬레이터를 개발한다. 시뮬레이터에서는 또한 이산화탄소의 수송 경로를 제공한다. 사례 연구로 한국에 모델을 적용한다.

Keywords

References

  1. IPCC, Climate Change 2014: Mitigation of Climate Change, Working Group III Contribution to the IPCC 5th Assessment Report, IPCC, Geneva, 2014
  2. IEA, World Energy Outlook 2009, OECD/IEA, Paris, 2009
  3. E. S. Rubin, IPCC special report on carbon dioxide capture and storage, RITE international workshop on CO2 geological storage, 2006.
  4. IEA Greenhouse Gas R&D Programme, Transmission of CO2 and Energy, Report no.PH4/6, 2002.
  5. E. S. Rubin, "Understanding the pitfalls of CCS cost estimates," International Journal of Greenhouse Gas Control, Vol.10, pp.181-190, 2012. https://doi.org/10.1016/j.ijggc.2012.06.004
  6. C. B. Farris, "Unusual design factors for supercritical CO2 pipelines," Energy Progress Vol.3, pp.150-158, 1983.
  7. EIA, Annual Energy Outlook 2007, DOE/EIA-0383, February 2007.
  8. EIA, Natural Gas Market Centers and Hubs, DOE/EIA-0383, October 2003
  9. D. L. McCollum and J. M. Ogden, Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage and Correlations for Estimating Carbon Dioxide Density and Viscosity, Institute of Transportation Studies, University of California, Davis, 2006.
  10. M. M .J. Knoope, W. Guijt, A. Ramirez, and A. P. C. Faaij, "Improved cost models for optimizing CO2 pipeline configuration for point-to-point pipelines and simple networks," International Journal of Greenhouse Gas Control, Vol.22, pp.25-46, 2014. https://doi.org/10.1016/j.ijggc.2013.12.016
  11. Rickard Svensson, Mikael Odenberger, Filip Johnsson, Lars Stromberg, "Transportation systems for CO2 application to carbon capture and storage," Energy Convention and Management, Vol.45, No.15-16, pp.2343-2353, 2004 https://doi.org/10.1016/j.enconman.2003.11.022
  12. J. R. MacFarland and H. J. Herzog, "Incorporating carbon capture and storage technologies in integrated assessment models," Energy Economics, Vol.28, pp.632-652, 2006. https://doi.org/10.1016/j.eneco.2006.05.016
  13. G. Cornuejols, G. Nemhauser, and L. Wolsey, The uncapacitated facility location problem. InP. Mirchandani and R. Francis, editors, Discrete Location Theory. John Wiley and Sons, 1990
  14. R. Love, J. Morris, and G. Wesolowsky, Facilities Location: Models and Methods, North-Holland, New York, NY, 1988
  15. P. Mirchandani and R. Francis, editors. Discrete Location Theory, John Wiley and Sons, New York, NY, 1990.
  16. D. S. Hochbaum, "Heuristics for the xed cost median problem," Mathematica Programming, Vol.22, pp.148-162, 1982. https://doi.org/10.1007/BF01581035
  17. K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. Vazirani, "Greedy facility location algorithms analyzed using dual tting factor revealing lp," To appear in the Journal of ACM.
  18. M. Korupolu, C. Plaxton, and R. Rajaraman, Analysis of a local search heuristic for facility location problems, Technical Report 98.30, DIMACS, 1998.
  19. E. S. Rubin and C. Chen, et al,. "Cost and performance of fossil fuel power plants with CO2 capture and storage," Energy Policy, Vol.35, No.9, pp.4444-4454, 2007. https://doi.org/10.1016/j.enpol.2007.03.009
  20. J. A. V. Lie, T. Hcogg, M. B. Grainger, D. Kim, and T. Mejdell, "Optimization of a membrane process for CO2 capture in the steel making industry," International Journal of Greenhouse Gas Control, Vol.1, No.3, pp.309-317, 2007. https://doi.org/10.1016/S1750-5836(07)00069-2
  21. M. Gadalla and Z. Olujic, M. Jobson, R. Smith, "Estimation and reduction of CO2 emission from crude oil distillation units," Energy, Vol.31, pp.2062-2072, 2006.
  22. K. Mollersten and J. Yan, Jose R. Moreira, "Potential market niches for biomass energy with CO2 capture and storage-Opportunities for energy supply with negative CO2 emissions," Biomass and Bioenergy, Vol.25, No.3, pp.273-285, 2003. https://doi.org/10.1016/S0961-9534(03)00013-8
  23. IEA, World Energy Outlook 2010, OECD/IEA, Cancun, 7 Dec. 2010.
  24. Lawrence Page, Sergey Brin, Rajeev Motwani and Terry Winograd, "The PageRank Citation Ranking: Bringing Order to the Web," 1998.
  25. IEA GHG CO2 database, 2006, http://www.iea.org/statistics/topics/co2emissions/
  26. J. H. Han and I. B. Lee, "Development of a scalable infrastructure model for planning electricity generation and CO2 mitigation strategies under mandated reduction of GHG emission," Applied Energy, Vol.88, pp.5056-5068, 2011. https://doi.org/10.1016/j.apenergy.2011.07.010