DOI QR코드

DOI QR Code

Electron transport properties of Y-type zigzag branched carbon nanotubes

  • MaoSheng Ye (School of Mechatronic Engineering and Automation, Shanghai University) ;
  • HangKong, OuYang (School of Mechatronic Engineering and Automation, Shanghai University) ;
  • YiNi Lin (School of Mechatronic Engineering and Automation, Shanghai University) ;
  • Quan Ynag (School of Mechatronic Engineering and Automation, Shanghai University) ;
  • QingYang Xu (School of Mechatronic Engineering and Automation, Shanghai University) ;
  • Tao Chen (Robotics and Microsystems Center, Soochow University) ;
  • LiNing Sun (Robotics and Microsystems Center, Soochow University) ;
  • Li Ma (School of Mechatronic Engineering and Automation, Shanghai University)
  • Received : 2022.05.09
  • Accepted : 2023.04.07
  • Published : 2023.09.25

Abstract

The electron transport properties of Y-type zigzag branched carbon nanotubes (CNTs) are of great significance for micro and nano carbon-based electronic devices and their interconnection. Based on the semi-empirical method combining tight-binding density functional theory and non-equilibrium Green's function, the electron transport properties between the branches of Y-type zigzag branched CNT are studied. The results show that the drain-source current of semiconducting Y-type zigzag branched CNT (8, 0)-(4, 0)-(4, 0) is cut-off and not affected by the gate voltage in a bias voltage range [-0.5 V, 0.5 V]. The current presents a nonlinear change in a bias voltage range [-1.5 V, -0.5 V] and [0.5 V, 1.5 V]. The tangent slope of the current-voltage curve can be changed by the gate voltage to realize the regulation of the current. The regulation effect under negative bias voltage is more significant. For the larger diameter semiconducting Y-type zigzag branched CNT (10, 0)-(5, 0)-(5, 0), only the value of drain-source current increases due to the larger diameter. For metallic Y-type zigzag branched CNT (12, 0)-(6, 0)-(6, 0), the drain-source current presents a linear change in a bias voltage range [-1.5 V, 1.5 V] and is symmetrical about (0, 0). The slope of current-voltage line can be changed by the gate voltage to realize the regulation of the current. For three kinds of Y-type zigzag branched CNT with different diameters and different conductivity, the current-voltage curve trend changes from decline to rise when the branch of drain-source is exchanged. The current regulation effect of semiconducting Y-type zigzag branched CNT under negative bias voltage is also more significant.

Keywords

Acknowledgement

Project supported by the National Key Research and Development Program of China (2018YFB1309200), the National Natural Science Foundation of China (Grant Nos 61573238).

References

  1. Adamian, A., Safari, K.H., Sheikholeslami, M., Habibi, M., Al-Furjan, M. and Chen, G. (2020), "Critical temperature and frequency characteristics of GPLs-reinforced composite doubly curved panel", Appl. Sci., 10(9), 3251. https://doi.org/10.3390/app10093251.
  2. Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39. http://doi.org/10.12989/anr.2018.6.1.039.
  3. Akbas, S.D. (2018), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219. http://doi.org/10.12989/anr.2018.6.3.219.
  4. Al-Furjan, M., Dehini, R., Khorami, M., Habibi, M. and won Jung, D. (2020a), "On the dynamics of the ultra-fast rotating cantilever orthotropic piezoelectric nanodisk based on nonlocal strain gradient theory", Compos. Struct., 112990. https://doi.org/10.1016/j.compstruct.2020.112990.
  5. Al-Furjan, M., Fereidouni, M., Habibi, M., Abd Ali, R., Ni, J. and Safarpour, M. (2020b), "Influence of in-plane loading on the vibrations of the fully symmetric mechanical systems via dynamic simulation and generalized differential quadrature framework", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01177-7.
  6. Allahkarami, F., Nikkhah-Bahrami, M. and Saryazdi, M.G. (2017), "Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM", Steel Compos. Struct., 25(2), 141-155. https://doi.org/10.12989/scs.2017.25.2.141.
  7. Andriotis, A.N., Menon, M., Srivastava, D. and Chernozatonskii, L. (2001), "Rectification properties of carbon nanotube "Y-junctions", Phys. Rev. Lett., 87(6), 066802. https://doi.org/10.1103/PhysRevLett.87.066802.
  8. Araujo, F.R.V., da Costa, D.R., Lima, F.N., Nascimento, A.C.S. and Pereira, J.M., Jr. (2021), "Gate potential-controlled current switching in graphene Y-junctions", J. Phys. Condens. Matter., 33(37), 375501. https://doi.org/10.1088/1361-648X/ac0f2b.
  9. Arefi, M. and Zenkour, A.M. (2018), "Free vibration analysis of a three-layered microbeam based on strain gradient theory and three-unknown shear and normal deformation theory", Steel Compos. Struct., 26(4), 421-437. https://doi.org/10.12989/scs.2018.26.4.421.
  10. Aydogdu, M., Arda, M. and Filiz, S. (2018), "Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter", Adv. Nano Res., 6(3), 257. http://doi.org/10.12989/anr.2018.6.3.257.
  11. Azimi, M., Mirjavadi, S.S., Shafiei, N. and Hamouda, A.M.S. (2016), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A., 123(1), 104. https://doi.org/10.1007/s00339-016-0712-5.
  12. Bai, Y.X., Zhang, R.F., Ye, X., Zhu, Z.X., Xie, H.H., Shen, B.Y., Cai, D., Liu, B.F., Zhang, C.X., Jia, Z., Zhang, S.l., Li, X.D. and Wei, F. (2018), "Carbon nanotube bundles with tensile strength over 80 GPa", Nature Nanotechnol., 13(7), 589-595. https://doi.org/10.1038/s41565-018-0141-z.
  13. Bandaru, P.R., Daraio, C., Jin, S. and Rao, A.M. (2005), "Novel electrical switching behaviour and logic in carbon nanotube Y-junctions", Nature Mater., 4(9), 663-666. https://doi.org/10.1038/nmat1450.
  14. Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., 6(3), 279. http://doi.org/10.12989/anr.2018.6.3.279.
  15. Butti, P., Shorubalko, I., Sennhauser, U. and Ensslin, K. (2013), "Finite element simulations of graphene based three-terminal nanojunction rectifiers", J. Appl. Phys., 114(3), 033710. https://doi.org/10.1063/1.4815956.
  16. Buttiker, M., Imry, Y., Landauer, R. and Pinhas, S. (1985), "Generalized many-channel conductance formula with application to small rings", Phys. Rev. B, 31(10), 6207-6215. https://doi.org/10.1103/physrevb.31.6207.
  17. ChandraKishore, S. and Pandurangan, A. (2013), "Synthesis and characterization of Y-shaped carbon nanotubes using Fe/AlPO4 catalyst by CVD", Chem. Eng. J., 222, 472-477. https://doi.org/10.1016/j.cej.2013.02.070.
  18. Charlier, J.C., Ebbesen, T.W. and Lambin, P. (1996), "Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes", Phys. Rev. B, 53(16), 11108-11113. https://doi.org/10.1103/physrevb.53.11108.
  19. Chen, L., Zhao, Y., Jing, J. and Hou, H. (2023), "Microstructural evolution in graphene nanoplatelets reinforced magnesium matrix composites fabricated through thixomolding process", J. Alloys Compd., 940, 168824. https://doi.org/10.1016/j.jallcom.2023.168824.
  20. Chen, Q.L., Wu, X.J., Cheng, H.Y., Li, Q. and Chen, S. (2019), "Facile synthesis of carbon nanobranches towards cobalt ion sensing and high-performance micro-supercapacitors", Nanosc. Adv., 1(9), 3614-3620. https://doi.org/10.1039/c9na00181f.
  21. Cheng, F., Niu, B., Xu, N., Zhao, X. and Ahmad, A.M. (2023), "Fault detection and performance recovery design with deferred actuator replacement via a low-computation method", IEEE T Automat. Sci. Eng., 1-11. https://doi.org/10.1109/TASE.2023.3300723.
  22. Chico, L., Crespi, V.H., Benedict, L.X., Louie, S.G. and Cohen, M.L. (1996), "Pure carbon nanoscale devices nanotube heterojunctions", Phys. Rev. Lett., 76(6), 971. https://doi.org/10.1103/PhysRevLett.76.971.
  23. Dai, Z., Zhang, L., Bolandi, S.Y. and Habibi, M. (2021), "On the vibrations of the non-polynomial viscoelastic composite open-type shell under residual stresses", Compos. Struct., 113599. https://doi.org/10.1016/j.compstruct.2021.113599.
  24. Ding, H.Y., Shi, C.Y., Ma, L., Yang, Z., Wang, M.Y., Wang, Y.Q., Chen, T., Sun, L.N. and Toshio, F. (2018), "Visual servoing-based nanorobotic system for automated electrical characterization of nanotubes inside SEM", Sensors. 18(4), 1137. https://doi.org/10.3390/s18041137.
  25. Durkop, T., Getty, S.A., Cobas, E. and Fuhrer, M.S. (2004), "Extraordinary mobility in semiconducting carbon nanotubes", Nano Lett., 4(1), 35-39. https://doi.org/10.1021/nl034841q.
  26. Ebrahimi, F., Kokaba, M., Shaghaghi, G. and Selvamani, R. (2020), "Dynamic characteristics of hygro-magneto-thermo-electrical nanobeam with non-ideal boundary conditions", Adv. Nano Res., 8(2), 169-182. https://doi.org/10.12989/anr.2020.8.2.169.
  27. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499.
  28. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141. https://doi.org/10.12989/anr.2017.5.2.141.
  29. Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037.
  30. Ghadiri, M., Hosseini, S.H.S. and Shafiei, N. (2016a), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. https://doi.org/10.1080/15376494.2015.1091527.
  31. Ghadiri, M., Shafiei, N. and Alavi, H. (2017a), "Thermomechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770.
  32. Ghadiri, M., Shafiei, N. and Alireza Mousavi, S. (2016b), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A, 122(9), 837. https://doi.org/10.1007/s00339-016-0364-5.
  33. Ghadiri, M., Shafiei, N. and Babaei, R. (2017b), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., 25(2), 197-207. https://doi.org/10.12989/scs.2017.25.2.197.
  34. Ghadiri, M., Shafiei, N. and Hossein Alavi, S. (2017c), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech., 9(2), 319-337.
  35. Gu Yun-Feng, Wu Xiao-Li and Hong-Zhang, W. (2016), "Ballistic thermal rectification in the three-terminal graphene nanojunction with asymmetric connection angle", Acta Phys. Sin., 65(24), 248104. https://doi.org/10.7498/aps.65.248104.
  36. Guo, S., Zhao, X., Wang, H. and Xu, N. (2023), "Distributed consensus of heterogeneous switched nonlinear multiagent systems with input quantization and DoS attacks", Appl. Math. Comput., 456, 128127. https://doi.org/10.1016/j.amc.2023.128127.
  37. Hamidi, A., Houari, M.S.A., Mahmoud, S. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235.
  38. Handel, B., Hahnlein, B., Gockeritz, R., Schwierz, F. and Pezoldt, J. (2014), "Electrical gating and rectification in graphene three-terminal junctions", Appl. Surf. Sci., 291, 87-92. https://doi.org/10.1016/j.apsusc.2013.09.066.
  39. Hills, G., Lau, C., Wright, A., Fuller, S., Bishop, M.D., Srimani, T., Kanhaiya, P., Ho, R., Amer, A., Stein, Y., Murphy, D., Arvind, Chandrakasan, A. and Shulaker, M.M. (2019), "Modern microprocessor built from complementary carbon nanotube transistors", Nature, 572(7771), 595-602. https://doi.org/10.1038/s41586-019-1493-8.
  40. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01456-x.
  41. Huang, K., Xu, Q., Ying, Q., Gu, B. and Yuan, W. (2023a), "Wireless strain sensing using carbon nanotube composite film", Compos. Part B Eng., 256, 110650. https://doi.org/10.1016/j.compositesb.2023.110650.
  42. Huang, S., Zong, G., Wang, H., Zhao, X. and Alharbi, K.H. (2023b), "Command filter-based adaptive fuzzy self-triggered control for MIMO nonlinear systems with time-varying full-state constraints", Int. J. Fuzzy Syst., 1-18. https://doi.org/10.1007/s40815-023-01560-8.
  43. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform microtube", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-021-01395-7.
  44. Javey, A., Guo, J., Wang, Q., Lundstrom, M. and Dai, H.J. (2003), "Ballistic carbon nanotube field-effect transistors", Nature, 424(6949), 654-657. https://doi.org/10.1038/nature01797.
  45. Joseph Berkmans, A., Jagannatham, M., Priyanka, S. and Haridoss, P. (2014), "Synthesis of branched, nano channeled, ultrafine and nano carbon tubes from PET wastes using the arc discharge method", Waste Manag., 34(11), 2139-2145. https://doi.org/10.1016/j.wasman.2014.07.004.
  46. Kim, W.Y. and Kim, K.S. (2008), "Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the nonequilibrium Green's function method at the level of first principles theory", J. Comput. Chem., 29(7), 1073-1083. https://doi.org/10.1002/jcc.20865.
  47. Li, M., Guo, Q., Chen, L., Li, L., Hou, H. and Zhao, Y. (2022), "Microstructure and properties of graphene nanoplatelets reinforced AZ91D matrix composites prepared by electromagnetic stirring casting", J. Mater. Res. Technol., 21, 4138-4150. https://doi.org/10.1016/j.jmrt.2022.11.033.
  48. Li, Y., Li, S., Guo, K., Fang, X. and Habibi, M. (2020), "On the modeling of bending responses of graphene-reinforced higher order annular plate via two-dimensional continuum mechanics approach", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01166-w.
  49. Lin, Y.N., Ma, L., Yang, Q., Geng, S.C., Ye, M.-S., Chen, T. and Sun, L.N. (2022), "Electron transport properties of carbon nanotubes with radial compression deformation", Acta Phys. Sin., 71(2), 027301. https://doi.org/10.7498/aps.71.20211370.
  50. Liu, B., Zhou, H., Jin, H., Zhu, J., Wang, Z., Hu, C., Liang, L., Mu, S. and He, D. (2021), "A new strategy to access Co/N co-doped carbon nanotubes as oxygen reduction reaction catalysts", Chinese Chem. Lett., 32(1), 535-538. https://doi.org/10.1016/j.cclet.2020.04.002.
  51. Martel, R., Schmidt, T., Shea, H.R., Hertel, T. and Avouris, P. (1998), "Single- and multi-wall carbon nanotube field-effect transistors", Appl. Phys. Lett., 73(17), 2447-2449. https://doi.org/10.1063/1.122477.
  52. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E., Tounsi, A., Mahmoud, S., Tounsi, A. and Benrahou, K. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.
  53. Navi, B.R., Mohammadimehr, M. and Arani, A.G. (2019), "Active control of three-phase CNT/resin/fiber piezoelectric polymeric nanocomposite porous sandwich microbeam based on sinusoidal shear deformation theory", Steel Compos. Struct., 32(6), 753-767. https://doi.org/10.12989/scs.2019.32.6.753.
  54. Ohnishi, M., Suzuki, K. and Miura, H. (2016), "Effects of uniaxial compressive strain on the electronic-transport properties of zigzag carbon nanotubes", Nano Res., 9(5), 1267-1275. https://doi.org/10.1007/s12274-016-1022-0.
  55. Ouyang, M., Huang, J.L., Cheung, C.L. and Lieber, C.M. (2001), "Atomically resolved single-walled carbon nanotube intramolecular junctions", Science, 291(5501), 97-100. https://doi.org/10.1126/science.291.5501.97.
  56. Park, J., Daraio, C., Jin, S., Bandaru, P.R., Gaillard, J. and Rao, A.M. (2006), "Three-way electrical gating characteristics of metallic Y-junction carbon nanotubes", Appl. Phys. Lett., 88(24), 243113. https://doi.org/10.1063/1.2213013.
  57. Pecchia, A., Penazzi, G., Salvucci, L. and Di Carlo, A. (2008), "Non-equilibrium Green's functions in density functional tight binding: method and applications", New J. Phys., 10(6), 065022. https://doi.org/10.1088/1367-2630/10/6/065022.
  58. Peng, L.M., Zhang, Z.Y. and Qiu, C.G. (2019), "Carbon nanotube digital electronics", Nature Electron., 2(11), 499-505. https://doi.org/10.1038/s41928-019-0330-2.
  59. Pitner, G., Hills, G., Llinas, J.P., Persson, K.M., Park, R., Bokor, J., Mitra, S. and Wong, H.P. (2019), "Low-temperature side contact to carbon nanotube transistors: Resistance distributions down to 10 nm contact length", Nano Lett., 19(2), 1083-1089. https://doi.org/10.1021/acs.nanolett.8b04370.
  60. Seifert, G. (2007), "Tight-binding density functional theory: An approximate Kohn-Sham DFT scheme", J. Phys. Chem. A, 111(26), 5609-5613. https://doi.org/10.1021/jp069056r.
  61. Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Math. Modell., 43, 191-206. https://doi.org/10.1016/j.apm.2016.10.061.
  62. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020), "Vibration analysis of rotary tapered axially functionally graded timoshenko nanobeam in thermal environment", J. Solid Mech., 12(1), 16-32. https://doi.org/10.22034/jsm.2019.563759.1273.
  63. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM", Appl. Phys. A, 122(8), 728. https://doi.org/10.1007/s00339-016-0245-y.
  64. Shahabinejad, E., Shafiei, N. and Ghadiri, M. (2018), "Influence of temperature change on modal analysis of rotary functionally graded nano-beam in thermal environment", J. Solid Mech., 10(4), 779-803. https://jsm.arak.iau.ir/article_545719.html.
  65. Shen, S., Han, C., Wang, B. and Wang, Y. (2022), "Engineering dband center of nickel in nickel@nitrogen-doped carbon nanotubes array for electrochemical reduction of CO2 to CO and Zn-CO2 batteries", Chinese Chem. Lett., 33(8), 3721-3725. https://doi.org/10.1016/j.cclet.2021.10.063.
  66. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A, 123(5), 329. https://doi.org/10.1007/s00339-017-0955-9.
  67. Sun, Y., Peng, Z.S., Li, H.M., Wang, Z.Q., Mu, Y.Q., Zhang, G.P., Chen, S., Liu, S.Y., Wang, G.T., Liu, C.D., Sun, L.F., Man, B.Y. and Yang, C. (2019), "Suspended CNT-Based FET sensor for ultrasensitive and label-free detection of DNA hybridization", Biosens. Bioelectr., 137, 255-262. https://doi.org/10.1016/j.bios.2019.04.054.
  68. Tang, F., Wang, H., Zhang, L., Xu, N. and Ahmad, A.M. (2023), "Adaptive optimized consensus control for a class of nonlinear multi-agent systems with asymmetric input saturation constraints and hybrid faults", Commun. Nonlinear Sci. Numer. Simul., 126, 107446. https://doi.org/10.1016/j.cnsns.2023.107446.
  69. Wang, H., Chang, S., Hu, Y., He, H.Y., He, J., Huang, Q.J., He, F. and Wang, G.F. (2014), "A novel barrier controlled tunnel FET", IEEE Electr. Device Lett., 35(7), 798-800. https://doi.org/10.1109/led.2014.2325058.
  70. Wang, P., Gao, Z., Pan, F., Moradi, Z., Mahmoudi, T. and Khadimallah, M.A. (2022), "A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bidirectional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory", Eng. Anal. Bound. Elem., 143, 124-136. https://doi.org/10.1016/j.enganabound.2022.06.007.
  71. Wang Yi-Jun and Cheng, Y. (2015), "Field-emission current densities of carbon nanotube under the different electric fields", Acta Phys. Sin., 64(19), 197304. https://doi.org/10.7498/aps.64.197304.
  72. Wang, Y.Z., Ma, L., Yang, Q., Geng, S.C., Lin, Y.N., Chen, T. and Sun, L.N. (2020), "Length-controllable picking method and conductivity analysis of carbon nanotubes", Acta Phys. Sin., 69(6), 068801. https://doi.org/10.7498/aps.69.20191298.
  73. Wang, Z., Dai, L., Yao, J., Guo, T., Hrynsphan, D., Tatsiana, S. and Chen, J. (2021), "Enhanced adsorption and reduction performance of nitrate by Fe-Pd-Fe3O4 embedded multi-walled carbon nanotubes", Chemosphere, 281, 130718. https://doi.org/10.1016/j.chemosphere.2021.130718.
  74. Wu, W., Xu, N., Niu, B., Zhao, X. and Ahmad, A.M. (2023), "Low-computation adaptive saturated self-triggered tracking control of uncertain networked systems", Electronics, 12(13), 2771. https://doi.org/10.3390/electronics12132771
  75. Xin, Z., Zhao, X., Ji, H., Ma, T., Li, H., Zhong, S. and Shen, Z. (2021), "Amorphous carbon-linked TiO2/carbon nanotube film composite with enhanced photocatalytic performance: The effect of interface contact and hydrophilicity", Chinese Chem. Lett., 32(7), 2151-2154. https://doi.org/10.1016/j.cclet.2020.11.054.
  76. Xu, L., Qiu, C.G., Peng, L.M. and Zhang, Z.Y. (2020), "Suppression of leakage current in carbon nanotube field-effect transistors", Nano Res., 14(4), 976-981. https://doi.org/10.1007/s12274-020-3135-8.
  77. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 114395. https://doi.org/10.1016/j.compstruct.2021.114395.
  78. Xue, B.C., Shao, X.G. and Cai, W.S. (2008), "Structures and stabilities of multi-terminal carbon nanotube junctions", Comput. Mater. Sci., 43(3), 531-539. https://doi.org/10.1016/j.commatsci.2007.12.020.
  79. Yang, H., Huang, H., Liu, X., Li, Z., Li, J., Zhang, D., Chen, Y. and Liu, J. (2023), "Sensing mechanism of an Au-TiO2-Ag nanograting based on Fano resonance effects", Appl. Opt., 62(17), 4431-4438. https://doi.org/10.1364/AO.491732.
  80. Yang, Q., Ma, L., Geng, S.C., Lin, Y.N., Chen, T. and Sun, L.N. (2021a), "Molecular dynamics simulation of contact behaviors between multiwall carbon nanotube and metal surface", Acta Phys. Sin., 70(10), 222-234. https://doi.org/10.7498/aps.70.20202194.
  81. Yang, Q., Ma, L., Xiao, S., Zhang, D., Djoulde, A., Ye, M., Lin, Y., Geng, S., Li, X., Chen, T. and Sun, L. (2021b), "Electrical conductivity of multiwall carbon nanotube bundles contacting with metal electrodes by nano manipulators inside SEM", Nanomaterials, 11(5). https://doi.org/10.3390/nano11051290.
  82. Zare, R., Najaafi, N., Habibi, M., Ebrahimi, F. and Safarpour, H. (2020), "Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller", Smart Struct. Syst., 26(4), 469-480. https://doi.org/10.12989/sss.2020.26.4.469.
  83. Zhao, C., Yin, X., Guo, Z., Zhao, D., Yang, G., Chen, A., Fan, L., Zhang, Y. and Zhang, N. (2021), "High lithiophilic nitrogen-doped carbon nanotube arrays prepared by in-situ catalyze for lithium metal anode", Chinese Chem. Lett., 32(7), 2254-2258. https://doi.org/10.1016/j.cclet.2020.12.056.
  84. Zhao, W., Suo, H., Wang, S., Ma, L., Wang, L., Wang, Q. and Zhang, Z. (2022), "Mg gas infiltration for the fabrication of MgB2 pellets using nanosized and microsized B powders", J. Eur. Ceram. Soc., 42(15), 7036-7048. https://doi.org/10.1016/j.jeurceramsoc.2022.08.029.
  85. Zhao, Y., Niu, B., Zong, G., Zhao, X. and Alharbi, K.H. (2023), "Neural network-based adaptive optimal containment control for non-affine nonlinear multi-agent systems within an identifier-actor-critic framework", J. Franklin Inst., 360(12), 8118-8143. https://doi.org/10.1016/j.jfranklin.2023.06.014.