• Title/Summary/Keyword: carbon thin film

Search Result 493, Processing Time 0.027 seconds

RF power dependence on field emission property from carbon thin film grown by PECVD (PECVD에 의해 작성된 탄소계 박막의 전계전자방출특성에 대한 RF power 의존성에 관한 연구)

  • ;;K. Oura
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.519-523
    • /
    • 2000
  • Using plasma-enhanced chemical vapor deposition (PECVD), carbon thin film as electron field emitter were fabricated. These carbon thin film were deposited on Si(100) substrate at several RF power. These film were estimated by raman spectroscopy, scanning electron microscopy, and field emission. The field electron emission property of these carbon thin film was estimated by a diode technique. As the result, we observed that the field emission properties of these films were promoted by higher RF power. These results are explained as change of surface morphology and structural properties of carbon thin film

  • PDF

Liquid Crystal Alignment Effects Using a Carbon Nitride Thin Film (Carbon Nitride 박막을 이용한 액정배향 효과)

  • Park, Chang-Joon;Hwang, Jeong-Yeon;Kang, Hyung-Ku;Seo, Dae-Shik;Ahn, Han-Jin;Kim, Kyung-Chan;Kim, Jong-Bok;Baik, Hong-Koo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.23-26
    • /
    • 2004
  • We studied the nematic liquid crystal (NLC) aligning capabilities using the new alignment material of a Carbon Nitride (NDLC) thin film. NDLC thin film exhibits high electrical resistivity and thermal conductivity that are similar to the properties shown by diamond-like carbon (DLC) thin films. The diamond-like properties and nondiamond-like bonding make NDLC an attractive candidate for applications. A high pretilt angle of about $9.9^{\circ}$ by ion beam (IB) exposure on the NDLC thin film surface was measured. A good LC alignment is achieved by the IB alignment method on the NDLC thin film surface at annealing temperature of $200^{\circ}C$. The alignment defect of the NLC was observed above annealing temperature of $250^{\circ}C$. Consequently, the high pretilt angle and the good LC alignment by the IB alignment method on the NDLC thin film surface can be achieved.

  • PDF

The Effect of Substrate Temperature on Tribological and Electrical Properties of Sputtered Carbon Nitride Thin Film (스퍼터링 질화탄소 박막의 트라이볼로지 및 전기적 특성의 기판 온도 영향)

  • Park, Chan Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.33-38
    • /
    • 2021
  • Using facing target magnetron sputtering (FTMS) with a graphite target source, carbon nitride thin films were deposited on silicon and glass substrates at different substrate temperatures to confirm the tribological, electrical, and structural properties of thin films. The substrate temperatures were room temperature, 150℃, and 300℃. The tribology and electrical properties of the carbon nitride thin films were measured as the substrate temperature increased, and a study on the relation between these results and structural properties was conducted. The results show that the increase in the substrate temperature during the fabrication of the carbon nitride thin films increased the hardness and elastic modulus values, the critical load value was increased, and the residual stress value was reduced. Moreover, the increase in the substrate temperature during thin-film deposition was attributed to the improvement in the electrical properties of carbon nitride thin film.

A Study on Liquid Crystal Alignment effects by UV Alignment Method on a Diamond-Like-Carbon Thin Film Surface (Diamond-Like-Carbon 박막표면에 UV 배향법을 이용한 액정 배향 효과에 관한 연구)

  • 황정연;조용민;서대식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.3
    • /
    • pp.214-218
    • /
    • 2003
  • We studied the nematic liquid crystal (NLC) aligning capabilities by the UV alignment method on a diamond like carbon (DLC) thin film surface A good LC alignment by UV exposure on the DLC thin film surface at 200${\AA}$ of layer thickness was achieved. Also, a good LC alignment by the UV alignment method on the DLC thin film surface was observed at annealing temperature of 180$^{\circ}C$. However, the alignment defect of the NLC was observed above annealing temperature of 200$^{\circ}C$. Consequently, the good thermal stability of LC alignment by the UV alignment method o the DLC thin film surface can be achieved.

Liquid Crystal Alignment Effects using a Diamond-like Carbon Thin Film (Diamond-like Carbon 박막을 이용한 액정 배향 효과)

  • 황정연;조용민;서대식;노순준;이대규
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.5
    • /
    • pp.419-422
    • /
    • 2002
  • We studied the nematic liquid crystal (NLC) aligning capabilities using the new alignment material of a diamond like carbon (DLC) thin film. A high pretilt angle of about $3.5^{\circ}$ by ion beam(IB) exposure on the DLC thin film surface was measured. A good LC alignment by the IB alignment method on the DLC thin film surface was observed at annealing temperature of $200^{\circ}C$, and the alignment defect of the NLC was observed above annealing temperature of $220^{\circ}C$. Consequently, the high NLC pretilt angle and the good thermal stability of LC alignment by the IB alignment method on the DLC thin film surface can be achieved.

Field Electron Emission from Amorphous Carbon Thin Film Grown Using Rf Magnetron Sputtering Method (RF 마그네트론 스퍼터링법으로 성장된 Amorphous carbon 각막의 전계전자방출)

  • ;;K. Oura
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.234-240
    • /
    • 2001
  • Using RF magnetron sputtering, amorphous carbon(a-C) thin films as electron filed emitter were fabricated. these a-C thin films were deposited on Si(001) substrate at several temperatures. The field electron emission property of these a-C thin films was estimated by a diode technique. As the result, we observed that the field emission properties of the films were changed singnificantly with the substrate temperature and structural features of a-C film. The field emission properties were promoted by higher substrate temperatures. Furthermore N-doped a-C film exhibits more field emission property than that of undoped a-C film. These results are explained as change of surface morphology and structural properties of a-C film.

  • PDF

Effect of Nano Buffer Layer on Property and Growth of Carbon Thin Film (탄소계 박막의 성장과 특성에 대한 나노 Buffer Layer의 영향)

  • ;Takashi lkuno;Kenjirou Oura
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.1
    • /
    • pp.53-59
    • /
    • 2003
  • Using Platinum-silicide (PtSi) formed between silicon substrate and carbon film, we have improved the field emission of electrons from carbon films. Pt films were deposited on n-Si(100) substrates at room temperature by DC sputter technique. After deposition, these PtSi thin films were annealed at 400 ~ $600^{\circ}C$ in a vacuum chamber, and the carbon films were deposited on those Pt/Si substrates by laser ablation at room temperature. The field emission property of C/Pt/Si system is found to be better than that of C/Si system and it is showed that property was improved with increasing annealing temperature. The reasons why the field emission from carbon film was improved can be considered as follows, (1)the resistance of carbon films was decreased due to graphitization, (2)electric field concentration effectively occurred because the surface morphology of carbon film deposited on Pt/si substrates with rough surface, (3)it is showed that annealing induced reaction between Pt film and Si substrate, as a consequence that the interfacial resistance between Pt film and Si substrate was decreased.

Thin CNTs nanoliquid film development over a rough rotating disk

  • Swatilekha Nag;Susanta Maity;Sanjeev K. Metya
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.91-104
    • /
    • 2023
  • Development of thin carbon nanotubes (CNTs) nanoliquid film over the rough surface of a horizontal rotating disk is investigated by considering symmetric roughness either along the azimuthal or radial directions. The disk surface is either heated or cooled axisymmetrically from below. The effects of single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) are analyzed on the film thinning process with different types of base liquids. Closed form solutions for velocity and temperature field are obtained for small values of Reynolds number whereas the numerical solution is derived for moderate values of Reynolds number. It is found that fluid retention / depletion takes place when the roughness is symmetric along the azimuthal / radial directions. It is also seen that the film thinning rate enhances for MWCNTs compare to SWCNTs. Further it is found that two different heat transfer regions exits within the flow domain depending on the fact that heat is transferred from disk to liquid film and vice-versa.

Hydrogen sensing of Nano thin film and Nanowire structured cupric oxide deposited on SWNTs substrate: A comparison

  • Hoa, Nguyen Duc;Quy, Nguyen Van;O, Dong-Hun;Wei, Li;Jeong, Hyeok;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.52.1-52.1
    • /
    • 2009
  • Cupric oxide (CuO) is a p-type semiconductor with band gap of ~1.7 eV and reported to be suitable for catalysis, lithium-copper oxide electrochemical cells, and gas sensors applications. The nanoparticles, plates and nanowires of CuO were found sensing to NO2, H2S and CO. In this work, we report about the comparison about hydrogen sensing of nano thin film and nanowires structured CuO deposited on single-walled carbon nanotubes (SWNTs). The thin film and nanowires are synthesized by deposition of Cu on different substrate followed by oxidation process. Nano thin films of CuO are deposited on thermally oxidized silicon substrate, whereas nanowires are synthesized by using a porous thin film of SWNTs as substrate. The hydrogen sensing properties of synthesized materials are investigated. The results showed that nanowires cupric oxide deposited on SWNTs showed higher sensitivity to hydrogen than those of nano thin film CuO did.

  • PDF

Development of Thin Film Electrode by Thermal CVD and Its Anode Characteristics for Lithium Battery (Thermal CVD법을 이용한 박막전극의 개발 및 리튬이차전지의 음극특성)

  • Lee, Young-Ho;Kim, Seong-Il;Doh, Chil-Hoon;Jin, Bong-Soo;Min, Bok-Ki;Kim, Hyun-Soo;Moon, Seong-In;Yun, Mun-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.378-379
    • /
    • 2006
  • The carbon thin film was developed by the CVD method using the carbon source of toluene with the stream of argon gas at $800{\sim}1100^{\circ}C$ for 1 hour. Developed carbon thin films have the material loading of 0.27 mg($800^{\circ}C$), 0.80 mg($900^{\circ}C$), 2.3 mg($1000^{\circ}C$), and 2.9 mg($1100^{\circ}C$) for the disk of 15 mm diameter on single side. The characteristics of carbon thin film as the anode of thin film battery were evaluated using Li|C coin cell. Li|C($1100^{\circ}C$) coin cell has the first specific discharge and charge capacity of 953 mAh/g and 374 mAh/g, respectively, resulting the first Ah efficiency of 39.3 %. Capacity retention of the 5th cycle was 93.2 % indicating good cycleability. The carbon thin film prepared by CVD shows good specific capacity and cycleability, but low Ah efficiency.

  • PDF