• Title/Summary/Keyword: carbon shell

Search Result 310, Processing Time 0.031 seconds

Synthesis of Core-Shell Silica Nanoparticles with Hierarchically Bimodal Pore Structures

  • Yun, Seok-Bon;Park, Dae-Geun;Yun, Wan-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.467-467
    • /
    • 2011
  • Reflecting the growing importance of nanomaterials in science and technology, controlling the porosity combined with well-defined structural properties has been an ever-demanding pursuit in the related fields of frontier researches. A number of reports have focused on the synthesis of various nanoporous materials so far and, recently, the nanomaterials with multimodal porosity are getting an emerging importance due to their improved material properties compared with the mono porous materials. However, most of those materials are obtained in bulk phases while the spherical nanoparticles are one of the most practical platforms in a great number of applications. Here, we report on the synthesis of the core-shell silica nanoparticles with double mesoporous shells (DMSs). The DMS nsnoparticles are spherical and monodispersive and have two different mesoporous shells, i.e., the bimodal porosity. It is the first example of the core-shell silica nanoparticles with the different mesopores coexisting in the individual nanoparticles. Furthermore, the carbon and silica hollow capsules were also fabricated via a serial replication process.

  • PDF

Comparison of different cylindrical shell theories for stability of nanocomposite piezoelectric separators containing rotating fluid considering structural damping

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, G.A.
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.691-714
    • /
    • 2017
  • Rotating fluid induced vibration and instability of embedded piezoelectric nano-composite separators subjected to magnetic and electric fields is the main contribution of present work. The separator is modeled with cylindrical shell element and the structural damping effects are considered by Kelvin-Voigt model. Single-walled carbon nanotubes (SWCNTs) are used as reinforcement and effective material properties are obtained by mixture rule. The perturbation velocity potential in conjunction with the linearized Bernoulli formula is used for describing the rotating fluid motion. The orthotropic surrounding elastic medium is considered by spring, damper and shear constants. The governing equations are derived on the bases of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT). The nonlinear frequency and critical angular fluid velocity are calculated by differential quadrature method (DQM). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the stability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that with increasing volume fraction of SWCNTs, the frequency and critical angular fluid velocity are increased.

Buckling of axially loaded shell structures made of stainless steel

  • Ozer Zeybek;Ali Ihsan Celik;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.681-691
    • /
    • 2023
  • Stainless steels are commonly employed in engineering applications since they have superior properties such as low maintenance cost, and high temperature and corrosion resistance. These features allow them to be preferred in cylindrical shell structures as well. The behavior of a cylindrical shell structure made of stainless steel can be quite different from that made of carbon steel, as the material properties differ from each other. This paper deals with buckling behavior of axially loaded cylindrical shells made of stainless-steel. For this purpose, a combined experimental and numerical study was carried out. The experimental study comprised of testing of 18 cylindrical specimens. Following the experimental study, a numerical study was first conducted to validate test results. The comparisons show that finite element models provide good agreement with test results. Then, a numerical parametric study consisting of 450 models was performed to develop more generalized design recommendations for axially compressed cylindrical shell structures made of stainless steel. A simple formula was proposed for the practical design purposes. In other words, buckling strength curve equation is developed for three different fabrication quality.

MODEL DUST ENVELOPES FOR ASYMPTOTIC GIANT BRANCH STARS. II. CARBON STARS

  • Suh, Kyung-Won;Kwoun, Hee-Joung
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.168-178
    • /
    • 1995
  • We have modeled the dust envelopes around carbon stars with close attention to the evolution of the structure of the dust shells. We use various dust density distributions to take account the effect of the superwind due to the helium shell flash by adding a density increased region. Depending on the position and quality of the density increased region, the model results are different from the results with conventional density distribution. The new results fit the observations of some carbon stars better. The IR two-color diagrams comparing the results of the super wind models and IRAS observation of 252 carbon stars have been made. The new results can explain much wider regions on the IR two-color diagrams.

  • PDF

Photocurrent of CdSe nanocrystals on singlewalled carbon nanotube-field effect transistor

  • Jeong, Seung-Yol;Lim, Seung-Chu;Lee, Young-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.40-40
    • /
    • 2010
  • CdSe nanocrystals (NCs) have been decorated on singlewalled carbon nanotubes (SWCNTs) by combining a method of chemically modified substrate along with gate-bias control. CdSe/ZnS core/shell quantum dots were negatively charged by adding mercaptoacetic acid (MAA). The silicon oxide substrate was decorated by octadecyltrichlorosilane (OTS) and converted to hydrophobic surface. The negatively charged CdSe NCs were adsorbed on the SWCNT surface by applying the negative gate bias. The selective adsorption of CdSe quantum dots on SWCNTs was confirmed by confocal laser scanning microscope. The measured photocurrent clearly demonstrates that CdSe NCs decorated SWCNT can be used for photodetector and solar cell that are operable over a wide range of wavelengths.

  • PDF

Theoretical Studies Gas Phase Reaction of Alkoxide-Exchange at Silicon and Carbon Centers$^\dag$

  • Lee, Ik-Choon;Yang, Ki-Yull;Park, Byong-Seo;Lee, Kae-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.3
    • /
    • pp.231-235
    • /
    • 1986
  • MNDO and ab initio calculations for gas phase reactions of alkoxide-exchange at silicon and carbon centers have been performed. Results show that MNDO values of ${\Delta}$E's of these reactions closely parallel those of the STO-3G method. The alkoxide-exchange at silicon is shown to be facile due to the formation of stable five-coordinate intermediate while the reaction at carbon is predicted to proceed with high barrier; the difference in this substitution behavior between carbon and silicon is shown to be due to an easy valence shell expansion of silicon in accommodating an extra bond in the formation of stable five-coordinate intermediates.

Wave propagation in spherical and cylindrical panels reinforced with carbon nanotubes

  • Yi-Wen Zhang;Hao-Xuan Ding;Gui-Lin She
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.133-141
    • /
    • 2023
  • Based on the third-order shear deformation theory, the wave propagations in doubly curved spherical- and cylindrical- panels reinforced by carbon nanotubes (CNTs) are firstly investigated in present work. The coupled equations of wave propagation for the carbon nanotubes reinforced composite (CNTRC) doubly curved panels are established. Then, combined with the harmonic balance method, the eigenvalue technique is adopted to simulate the velocity-wave number curves of the CNTRC doubly curved panels. In the end, numerical results are showed to discuss the effects of the impact of key parameters including the volume fraction, different shell types (including spherical (R1=R2=R) and cylindrical (R1=R, R2=→∞)), wave number as well as modal number on the sensitivity of elastic waves propagating in CNTRC doubly curved shells.

Relationships between dielectric properties and characteristics of impregnated and activated samples of potassium carbonate-and sodium hydroxide-modified palm kernel shell for microwave- assisted activation

  • Alias, Norulaina;Zaini, Muhammad Abbas Ahmad;Kamaruddin, Mohd Johari
    • Carbon letters
    • /
    • v.24
    • /
    • pp.62-72
    • /
    • 2017
  • The aim of this work was to evaluate the dielectric properties of impregnated and activated palm kernel shells (PKSs) samples using two activating agents, potassium carbonate ($K_2CO_3$) and sodium hydroxide (NaOH), at three impregnation ratios. The materials were characterized by moisture content, carbon content, ash content, thermal profile and functional groups. The dielectric properties were examined using an open-ended coaxial probe method at various microwave frequencies (1-6 GHz) and temperatures (25, 35, and $45^{\circ}C$). The results show that the dielectric properties varied with frequency, temperature, moisture content, carbon content and mass ratio of the ionic solids. PKSK1.75 (PKS impregnated with $K_2CO_3$ at a mass ratio of 1.75) and PKSN1.5 (PKS impregnated with NaOH at a mass ratio of 1.5) exhibited a high loss tangent ($tan{\delta}$) indicating the effectiveness of these materials to be heated by microwaves. $K_2CO_3$ and NaOH can act as a microwave absorber to enhance the efficiency of microwave heating for low loss PKSs. Materials with a high moisture content exhibit a high loss tangent but low penetration depth. The interplay of multiple operating frequencies is suggested to promote better microwave heating by considering the changes in the materials characteristics.

On the Rotational Barrier of Organic Molecules (I). Role of Axial Carbon in Ethane (유기분자의 내부 회전장벽에 관한 이론적 연구 (제1보). 에탄에서의 중심 탄소의 역할)

  • Young Sik Kim;Hojing Kim
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.117-127
    • /
    • 1982
  • In order to analyze the role of axial carbon atoms in rotational barrier of ethane, we take the carbonless ethane, as a model, which is made of six hydrogens in coordinates of ethane. The energy of the system is calculated by McWeeny's open-shell restricted Hartree-Foch selfconsistent-field (RHF-SCF) method, and the transition density on the staggered-to-eclipsed rotation is examined. As being expected, the eclipsed form of the model is more stable than the staggered one. Through the transition density comparison of this model and real ethane, it is found that the existence of the axial carbon atoms induces the electronic density to be diluted in the vicinity of protonic sites and to be attracted to the region of carbon atoms or further to C-C bond region as the barrier is traversed. This migration of electronic charge tell us that the barrier to the internal rotation of ethane originates from the fact that the magnitude of electronic energy depression is not large enough to offset the increased nuclear-nuclear repulsion on the staggered-to-eclipsed rotation.

  • PDF

Utilization of Egg-shell for Bread-making (제빵시 난각의 이용에 관한 연구)

  • Kim, Joong-Man;Kim, Yong-Seob;Yang, Hee-Chon;Choi, Yong-Bae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.18 no.2
    • /
    • pp.160-166
    • /
    • 1989
  • This study was conducted to investigate whether egg-shell may be used as a mineral sourceor leavening agent in breadmaking. In Korea the waste volume of egg shell has been estimated at about 28,694 tons per year. Carbon dioxide generation maxima were established for barking powder$(153{\pm}3ml/g)$, egg-shell(205in reaction with lactic acid) and yeast$(115{\pm}3ml/sugar\;g)$. Gas release time required for each substance to reach $CO_2$ maximum was, for baking powder 7 minutes, for egg-shell 45 mins and for yeast 240 mins. Particle size of egg-shell in breadmaking was suitable more than 20 mesh (-). When egg-shell only was added to the basic formular without including lactic acid, no leavening effect was observed. However, when lactic acid and egg-shell were used together, the leavening effect was more or less equivalent to that of yeast(control). Addition of egg-shell was found to increase calcium content of bread products without noticeable altering flavor, as compared with control. Joint use of egg-shell was organic acids in breadmaking was shown to have potential in time saving, volume increase and yeast saving.

  • PDF