Acknowledgement
The research described in this paper was financially supported by the Kayseri University coded with FBA-2022-1064 and Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program: Advanced Digital Technologies (contract No. 075-15-2022-312 dated 20.04.2022).
References
- Ahmadi, H. and Foroutan, K. (2020), "Active vibration control of nonlinear stiffened FG cylindrical shell under periodic loads", Smart Struct. Syst., 25(6), 643-655. https://doi.org/10.12989/sss.2020.25.6.643.
- Al-Mekhlafi, G.M., Al-Osta, M.A. and Sharif, A.M. (2020), "Experimental and numerical investigations of stainless steel tubular columns strengthened by CFRP composites", Thin-Wall. Struct., 157, 107080.
- Arbelo, M.A., Degenhardt, R., Castro, S.G.P. and Zimmermann, R. (2014), "Numerical characterization of imperfection sensitive composite structures", Compos. Struct., 108, 295-303. https://doi.org/10.1016/j.compstruct.2013.09.041.
- Arrayago, I., Real, E. and Gardner, L. (2015), "Description of stress-strain curves for stainless steel alloys", Mater. Des., 87, 540-552. https://doi.org/10.1016/j.matdes.2015.08.001
- Binder, B. (1996), Stabilitat einseitig offener, verankerter, aussendruckbelasteter Kreiszylinderschalen unter besonderer Berucksichtigung des Nachbeulverhaltens, PhD-Thesis, University-GH Essen, Fachbereich 10, na
- Cai, Y. and Young, B. (2019), "Experimental investigation of carbon steel and stainless steel bolted connections at different strain rates", Steel Compos. Struct., 30(6), 551-565. https://doi.org/10.12989/scs.2019.30.6.551.
- Cai, J., Pan, J., Li, G. and Elchalakani, M. (2023), "Behaviors of eccentrically loaded ECC-encased CFST columns after fire exposure", Eng. Struct., 289, 116258. https://doi.org/10.1016/j.engstruct.2023.116258.
- Celik, A.I., KOSe, M.M., AkgUL, T. and Alpay, A.C. (2018), "Directional-deformation analysis of cylindrical steel water tanks subjected to El-Centro Earthquake loading", Sigma J. Eng. Nat. Sci.. 36(4), 1033-1046.
- Celik, A.I., Kose, M.M., Akgul, T. and Apay, A.C. (2019), "Effects of Shell Thickness on Directional Deformation and Buckling Behaviour Cylindrical Steel Water Tanks Subjected to the Kobe Earthquake", Sakarya U niversitesi Fen Bilimleri Enstitusu Dergisi.
- Daemi, H. and Eipakchi, H. (2020), "Effect of different viscoelastic models on free vibrations of thick cylindrical shells through FSDT under various boundary conditions", Struct. Eng. Mech., 73(3), 319-330. https://doi.org/10.12989/sem.2020.73.3.319.
- Dundu, M. (2018), "Evolution of stress-strain models of stainless steel in structural engineering applications", Construct. Build. Mater., 165, 413-423. https://doi.org/10.1016/j.conbuildmat.2018.01.008.
- Dundu, M. and Van Tonder, P. (2014), "Local buckling strength of stainless steel beam webs subjected to a stress gradient", Thin-Wall. Struct., 77, 48-55. https://doi.org/10.1016/j.tws.2013.11.014.
- EN 1993-1-6 (2007). Eurocode 3-Design of Steel Structures-Part 1.6: Strength and Stability of Shell Structures", Brussels: CEN.
- European Convention for Constructional Steelwork. Technical Working, G., Rotter, J.M. and Schmidt, H. (2013), Buckling of Steel Shells: European Design Recommendations.
- Fu, Z.H., Yang, B.J., Shan, M.L., Li, T., Zhu, Z.Y., Ma, C.P. and Gao, W. (2020), "Hydrogen embrittlement behavior of SUS301L-MT stainless steel laser-arc hybrid welded joint localized zones", Corrosion Sci., 164, 108337. https://doi.org/10.1016/j.corsci.2019.108337.
- Ghazijahani, T.G., Jiao, H. and Holloway, D. (2014), "Experimental study on damaged cylindrical shells under compression", Thin-Wall. Struct., 80, 13-21. https://doi.org/10.1016/j.tws.2014.02.029.
- Ghazijahani, T.G., Jiao, H. and Holloway, D. (2014), "Influence of a cutout on circular steel hollow sections under cyclic loading", J. Construct. Steel Res., 100, 12-20. https://doi.org/10.1016/j.jcsr.2014.04.015.
- Gorbachov, A., Stranghoner, N. and Rotter, J.M. (2017), "04.03: Buckling behaviour of axially compressed cylindrical shells made of stainless steel", ce/papers. 1(2-3), 828-837. https://doi.org/10.1002/cepa.123
- Greiner, R., Schmidt, H. and Rotter, J.M. (2008), Rules for the Buckling Limit State Assessment Using Stress Design, ECCS-European Convention for Constructional Steelwork
- Hautala, K.T. (2003), "Buckling reduction factors for stainless steel shell structures", Steel Construct. Institute.
- He, J., Zhu, S., Luo, C., Niu, X. and Wang, Q. (2022), "Size effect in fatigue modelling of defective materials: Application of the calibrated weakest-link theory", Int. J. Fatigue, 165, 107213. https://doi.org/10.1016/j.ijfatigue.2022.107213.
- Huang, H., Xue, C., Zhang, W. and Guo, M. (2022), "Torsion design of CFRP-CFST columns using a data-driven optimization approach", Eng. Struct., 251, 113479. https://doi.org/10.1016/j.engstruct.2021.113479
- Ifayefunmi, O., Ismail, M.S. and Othman, M.Z.A. (2021), "Buckling of unstiffened cone-cylinder shells subjected to axial compression and thermal loading", Ocean Eng., 225, 108601. https://doi.org/10.1016/j.oceaneng.2021.108601.
- Jiang, J., Ye, M., Chen, L.Y., Zhu, Z.W. and Wu, M. (2023), "Study on static strength of Q690 built-up K-joints under axial loads", Structures, 51, 760-775. https://doi.org/10.1016/j.istruc.2023.03.034.
- Jiao, P., Chen, Z., Ma, H., Ge, P., Gu, Y. and Miao, H. (2021), "Buckling behaviors of thin-walled cylindrical shells under localized axial compression loads, Part 1: Experimental study", Thin-Wall. Struct., 166, 108118. https://doi.org/10.1016/j.tws.2021.108118.
- Jiao, P., Chen, Z., Xu, F., Tang, X. and Su, W. (2018), "Effects of ringed stiffener on the buckling behavior of cylindrical shells with cutout under axial compression: Experimental and numerical investigation", Thin-Wall. Struct., 123, 232-243. https://doi.org/10.1016/j.tws.2017.11.013.
- Khadimallah, M.A., Hussain, M., Khedher, K.M., Naeem, M.N. and Tounsi, A. (2020), "Backward and forward rotating of FG ring support cylindrical shells", Steel Compos. Struct., 37(2), 137-150. https://doi.org/10.12989/scs.2020.37.2.137.
- Koiter, W.T. (1945), "On the stability of elastic equilibrium", Ph.D. Dissertation, Delft, Holland: Delft Institute of Technology.
- Koiter, W.T. (1963), "The effect of axisymmetric imperfections on the buckling of cylindrical shells under axial compression", Proceedings, Kon. Ned. Ak. Wet., 1963. 66 265-279.
- Lam, D. and Gardner, L. (2008), "Structural design of stainless steel concrete filled columns", J. Construct. Steel Res., 64(11), 1275-1282. https://doi.org/10.1016/j.jcsr.2008.04.012
- Lawrence, K.L. (2010), Ansys Tutorial Release 12.1, SDC Publications
- Liu, F., Gong, J.-G., Chen, H. and Xuan, F.-Z. (2021), "A direct approach to progressive buckling design considering ratcheting deformation", Thin-Wall. Struct., 163, 107656. https://doi.org/10.1016/j.tws.2021.107656.
- Liu, F., Niu, T., Gong, J.-G., Chen, H. and Xuan, F.-Z. (2023), "Experimental and numerical investigations on buckling behaviours of axially compressed cylindrical-conical-cylindrical shells at elevated temperature", Thin-Wall. Struct., 184, 110549. https://doi.org/10.1016/j.tws.2023.110549.
- Liu, C., Peng, Z., Cui, J., Huang, X., Li, Y. and Chen, W. (2023), "Development of crack and damage in shield tunnel lining under seismic loading: Refined 3D finite element modeling and analyses", Thin-Wall. Struct., 185, 110647. https://doi.org/10.1016/j.tws.2023.110647.
- Lorenz, R. (1908), "Achsensymmetrische verzerrungen in dunnwandigen hohlzylindern", Zeitschrift des Vereines Deutscher Ingenieure. 52(43), 1706-1713.
- Ma, H., Jiao, P., Li, H., Cheng, Z. and Chen, Z. (2023), "Buckling analyses of thin-walled cylindrical shells subjected to multiregion localized axial compression: Experimental and numerical study", Thin-Wall. Struct., 183, 110330.
- Ma, X., Hao, P., Wang, F. and Wang, B. (2020), "Incomplete reduced stiffness method for imperfection sensitivity of cylindrical shells", Thin-Wall. Struct., 157, 107148. https://doi.org/10.1016/j.tws.2020.107148.
- Moradi, A., Poorveis, D. and Khajehdezfuly, A. (2022), "Buckling of FGM elliptical cylindrical shell under follower lateral pressure", Steel Compos. Struct., 45(2), 175-191. https://doi.org/10.12989/scs.2022.45.2.175.
- Prabu, B., Raviprakash, A.V. and Venkatraman, A. (2010), "Parametric study on buckling behaviour of dented short carbon steel cylindrical shell subjected to uniform axial compression", Thin-Wall. Struct., 48(8), 639-649. https://doi.org/10.1016/j.tws.2010.02.009.
- Real, E., Arrayago, I., Mirambell, E. and Westeel, R. (2014), "Comparative study of analytical expressions for the modelling of stainless steel behaviour", Thin-Wall. Struct., 83, 2-11. https://doi.org/10.1016/j.tws.2014.01.026
- Rasmussen, K.J. (2003), "Full-range stress-strain curves for stainless steel alloys", J. Construct. Steel Res., 59(1), 47-61. https://doi.org/10.1016/S0143-974X(02)00018-4
- Rotter, J.M (2003) "Cylindrical shells under axial compression" Chapter 2 of the book Buckling of Thin Metal Structures, edited by JG Teng and JM Rotter, Spon, London, 42-87.
- Rotter, J.M. (2011), "Shell buckling design and assessment and the LBA-MNA methodology", Stahlbau. 80(11), 791-803. https://doi.org/10.1002/stab.201101491
- Seide, P., Weingarten, V.I. and Morgan, E.J. (1960), The Development of Design Criteria for Elastic Stability of Thin Shell Structures, TRW Space Technology Labs Los Angeles CA
- Shokrollahi, H. (2018), "Deformation and stress analysis of a sandwich cylindrical shell using HDQ Method", Steel Compos. Struct., 27(1), 35-48. https://doi.org/10.12989/scs.2018.27.1.035.
- Sonat, C., Topkaya, C. and Rotter, J.M. (2015), "Buckling of cylindrical metal shells on discretely supported ring beams", Thin-Wall. Struct., 93, 22-35. https://doi.org/10.1016/j.tws.2015.03.003.
- Southwell, R.V. (1914), "V. On the general theory of elastic stability", Philosoph. Transact. Royal Soc. London. Series A, Containing Papers Mathem. Phys. Character, 213(497-508), 187-244.
- Stranghoner, N., Azizi, E. and Gorbachov, A. (2019), "Influence of material nonlinearity on the buckling resistance of stainless steel shells", J. Construct. Steel Res., 157, 386-396. https://doi.org/10.1016/j.jcsr.2019.02.030
- Taheri-Behrooz, F. and Omidi, M. (2018), "Buckling of axially compressed composite cylinders with geometric imperfections", Steel Compos. Struct., 29(4), 557-567. https://doi.org/10.12989/scs.2018.29.4.557.
- Tian, K., Wang, B., Hao, P. and Waas, A.M. (2018), "A highfidelity approximate model for determining lower-bound buckling loads for stiffened shells", Int. J. Solids Struct., 148, 14-23. https://doi.org/10.1016/j.ijsolstr.2017.10.034.
- Tian, L., Li, M., Li, L., Li, D. and Bai, C. (2023), "Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios", Thin-Wall. Struct., 182, 110219. https://doi.org/10.1016/j.tws.2022.110219.
- Tian, L., Jin, B. and Li, L. (2023), "Axial compressive mechanical behaviors of a double-layer member", J. Struct. Eng., 149(8), 4023110. https://doi.org/10.1061/JSENDH.STENG-12175.
- Timoshenko, S.P. (1910), "Einige stabilitatsprobleme der elastizitatstheorie", Zeitschrift fur Mathematik und Physik. 58(4), 337-385.
- Wei, J., Xie, Z., Zhang, W., Luo, X., Yang, Y. and Chen, B. (2021), "Experimental study on circular steel tube-confined reinforced UHPC columns under axial loading", Eng. Struct., 230, 111599. https://doi.org/10.1016/j.engstruct.2020.111599.
- Weingarten, V.I., Morgan, E.J. and Seide, P. (1964), "Design criteria for the elastic stability of thin-walled cylindrical and conical shells under axial compression", Northrop Norair, NB. 64-125.
- Wu, Z., Huang, B., Fan, J. and Chen, H. (2023), "Homotopy based stochastic finite element model updating with correlated static measurement data", Measurement, 210, 112512. https://doi.org/10.1016/j.measurement.2023.112512.
- Wullschleger, L. and Meyer-Piening, H.R. (2002), "Buckling of geometrically imperfect cylindrical shells-definition of a buckling load", Int. J. Non-Linear Mech., 37(4-5), 645-657. https://doi.org/10.1016/S0020-7462(01)00089-0.
- Yadav, K.K., Cuccia, N.L., Virot, E., Rubinstein, S.M. and Gerasimidis, S. (2021), "A nondestructive technique for the evaluation of thin cylindrical shells' axial buckling capacity", J. Appl. Mech., 88(5). https://doi.org/10.1115/1.4049806.
- Yang, H., Hu, J., Xu, L. and Lu, G. (2016), "Peripheral deformation and buckling of stainless steel hemispherical shells compressed by a flat plate", Latin Amer. J. Solids Struct., 13, 257-271. https://doi.org/10.1590/1679-78252434.
- Yang, Y., Lin, B. and Zhang, W. (2023), "Experimental and numerical investigation of an arch-beam joint for an arch bridge", Arch. Civil Mech. Eng., 23(2), 101. https://doi.org/10.1007/s43452-023-00645-3.
- Yilmaz, H., Kocabas, I. and Ozyurt, E. (2017), "Empirical equations to estimate non-linear collapse of medium-length cylindrical shells with circular cutouts", Thin-Wall. Struct., 119, 868-878. https://doi.org/10.1016/j.tws.2017.08.008.
- Zeybek, O. and Ozkilic, Y.O. (2023), "Effects of reinforcing steel tanks with intermediate ring stiffeners on wind buckling during construction", J. Construct. Steel Res., 203, 107832. https://doi.org/10.1016/j.jcsr.2023.107832.
- Zeybek, O. and Topkaya, C. (2022), "Stiffness requirements for wind girders in open-top cylindrical steel tanks", Thin-Wall. Struct., 176, 109353. https://doi.org/10.1016/j.tws.2022.109353.
- Zhai, S., Lyu, Y., Cao, K., Li, G., Wang, W. and Chen, C. (2023), "Seismic behavior of an innovative bolted connection with dualslot hole for modular steel buildings", Eng. Struct., 279, 115619. https://doi.org/10.1016/j.engstruct.2023.115619.
- Zhao, O., Gardner, L. and Young, B. (2016), "Structural performance of stainless steel circular hollow sections under combined axial load and bending-Part 1: Experiments and numerical modelling", Thin-Wall. Struct., 101, 231-239. https://doi.org/10.1016/j.tws.2015.12.003
- Zhao, D., Jiang, C. and Zhao, K. (2023), "Ultrasonic welding of AZ31B magnesium alloy and pure copper: microstructure, mechanical properties and finite element analysis", J. Mater. Res. Technol., 23, 1273-1284. https://doi.org/10.1016/j.jmrt.2023.01.095
- Zhu, H., Su, J., Yang, F., Wu, Y., Ye, J., Huang, K. and Yang, Y. (2023), "Effect of lossy thin-walled cylindrical food containers on microwave heating performance", J. Food Eng., 337, 111232.
- Zhu, Z.Y., Liu, Y. L., Gou, G. Q., Gao, W. and Chen, J. (2021), "Effect of heat input on interfacial characterization of the butter joint of hot-rolling CP-Ti/Q235 bimetallic sheets by Laser+CMT", Sci. Rep., 11(1), 10020. https://doi.org/10.1038/s41598-021-89343-9.
- Zoelly, R. (1915), Ueber ein Knickungsproblem an der Kugelschale, Buchdr. Zurcher & Furrer