DOI QR코드

DOI QR Code

Buckling of axially loaded shell structures made of stainless steel

  • Ozer Zeybek (Department of Civil Engineering, Faculty of Engineering, Mugla Sitki Kocman University) ;
  • Ali Ihsan Celik (Tomarza Mustafa Akincioglu Vocational School, Department of Construction, Kayseri University) ;
  • Yasin Onuralp Ozkilic (Department of Civil Engineering, Faculty of Engineering, Necmettin Erbakan University)
  • Received : 2023.06.19
  • Accepted : 2023.09.07
  • Published : 2023.09.25

Abstract

Stainless steels are commonly employed in engineering applications since they have superior properties such as low maintenance cost, and high temperature and corrosion resistance. These features allow them to be preferred in cylindrical shell structures as well. The behavior of a cylindrical shell structure made of stainless steel can be quite different from that made of carbon steel, as the material properties differ from each other. This paper deals with buckling behavior of axially loaded cylindrical shells made of stainless-steel. For this purpose, a combined experimental and numerical study was carried out. The experimental study comprised of testing of 18 cylindrical specimens. Following the experimental study, a numerical study was first conducted to validate test results. The comparisons show that finite element models provide good agreement with test results. Then, a numerical parametric study consisting of 450 models was performed to develop more generalized design recommendations for axially compressed cylindrical shell structures made of stainless steel. A simple formula was proposed for the practical design purposes. In other words, buckling strength curve equation is developed for three different fabrication quality.

Keywords

Acknowledgement

The research described in this paper was financially supported by the Kayseri University coded with FBA-2022-1064 and Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program: Advanced Digital Technologies (contract No. 075-15-2022-312 dated 20.04.2022).

References

  1. Ahmadi, H. and Foroutan, K. (2020), "Active vibration control of nonlinear stiffened FG cylindrical shell under periodic loads", Smart Struct. Syst., 25(6), 643-655. https://doi.org/10.12989/sss.2020.25.6.643.
  2. Al-Mekhlafi, G.M., Al-Osta, M.A. and Sharif, A.M. (2020), "Experimental and numerical investigations of stainless steel tubular columns strengthened by CFRP composites", Thin-Wall. Struct., 157, 107080.
  3. Arbelo, M.A., Degenhardt, R., Castro, S.G.P. and Zimmermann, R. (2014), "Numerical characterization of imperfection sensitive composite structures", Compos. Struct., 108, 295-303. https://doi.org/10.1016/j.compstruct.2013.09.041.
  4. Arrayago, I., Real, E. and Gardner, L. (2015), "Description of stress-strain curves for stainless steel alloys", Mater. Des., 87, 540-552. https://doi.org/10.1016/j.matdes.2015.08.001
  5. Binder, B. (1996), Stabilitat einseitig offener, verankerter, aussendruckbelasteter Kreiszylinderschalen unter besonderer Berucksichtigung des Nachbeulverhaltens, PhD-Thesis, University-GH Essen, Fachbereich 10, na
  6. Cai, Y. and Young, B. (2019), "Experimental investigation of carbon steel and stainless steel bolted connections at different strain rates", Steel Compos. Struct., 30(6), 551-565. https://doi.org/10.12989/scs.2019.30.6.551.
  7. Cai, J., Pan, J., Li, G. and Elchalakani, M. (2023), "Behaviors of eccentrically loaded ECC-encased CFST columns after fire exposure", Eng. Struct., 289, 116258. https://doi.org/10.1016/j.engstruct.2023.116258.
  8. Celik, A.I., KOSe, M.M., AkgUL, T. and Alpay, A.C. (2018), "Directional-deformation analysis of cylindrical steel water tanks subjected to El-Centro Earthquake loading", Sigma J. Eng. Nat. Sci.. 36(4), 1033-1046.
  9. Celik, A.I., Kose, M.M., Akgul, T. and Apay, A.C. (2019), "Effects of Shell Thickness on Directional Deformation and Buckling Behaviour Cylindrical Steel Water Tanks Subjected to the Kobe Earthquake", Sakarya U niversitesi Fen Bilimleri Enstitusu Dergisi.
  10. Daemi, H. and Eipakchi, H. (2020), "Effect of different viscoelastic models on free vibrations of thick cylindrical shells through FSDT under various boundary conditions", Struct. Eng. Mech., 73(3), 319-330. https://doi.org/10.12989/sem.2020.73.3.319.
  11. Dundu, M. (2018), "Evolution of stress-strain models of stainless steel in structural engineering applications", Construct. Build. Mater., 165, 413-423. https://doi.org/10.1016/j.conbuildmat.2018.01.008.
  12. Dundu, M. and Van Tonder, P. (2014), "Local buckling strength of stainless steel beam webs subjected to a stress gradient", Thin-Wall. Struct., 77, 48-55. https://doi.org/10.1016/j.tws.2013.11.014.
  13. EN 1993-1-6 (2007). Eurocode 3-Design of Steel Structures-Part 1.6: Strength and Stability of Shell Structures", Brussels: CEN.
  14. European Convention for Constructional Steelwork. Technical Working, G., Rotter, J.M. and Schmidt, H. (2013), Buckling of Steel Shells: European Design Recommendations.
  15. Fu, Z.H., Yang, B.J., Shan, M.L., Li, T., Zhu, Z.Y., Ma, C.P. and Gao, W. (2020), "Hydrogen embrittlement behavior of SUS301L-MT stainless steel laser-arc hybrid welded joint localized zones", Corrosion Sci., 164, 108337. https://doi.org/10.1016/j.corsci.2019.108337.
  16. Ghazijahani, T.G., Jiao, H. and Holloway, D. (2014), "Experimental study on damaged cylindrical shells under compression", Thin-Wall. Struct., 80, 13-21. https://doi.org/10.1016/j.tws.2014.02.029.
  17. Ghazijahani, T.G., Jiao, H. and Holloway, D. (2014), "Influence of a cutout on circular steel hollow sections under cyclic loading", J. Construct. Steel Res., 100, 12-20. https://doi.org/10.1016/j.jcsr.2014.04.015.
  18. Gorbachov, A., Stranghoner, N. and Rotter, J.M. (2017), "04.03: Buckling behaviour of axially compressed cylindrical shells made of stainless steel", ce/papers. 1(2-3), 828-837. https://doi.org/10.1002/cepa.123
  19. Greiner, R., Schmidt, H. and Rotter, J.M. (2008), Rules for the Buckling Limit State Assessment Using Stress Design, ECCS-European Convention for Constructional Steelwork
  20. Hautala, K.T. (2003), "Buckling reduction factors for stainless steel shell structures", Steel Construct. Institute.
  21. He, J., Zhu, S., Luo, C., Niu, X. and Wang, Q. (2022), "Size effect in fatigue modelling of defective materials: Application of the calibrated weakest-link theory", Int. J. Fatigue, 165, 107213. https://doi.org/10.1016/j.ijfatigue.2022.107213.
  22. Huang, H., Xue, C., Zhang, W. and Guo, M. (2022), "Torsion design of CFRP-CFST columns using a data-driven optimization approach", Eng. Struct., 251, 113479. https://doi.org/10.1016/j.engstruct.2021.113479
  23. Ifayefunmi, O., Ismail, M.S. and Othman, M.Z.A. (2021), "Buckling of unstiffened cone-cylinder shells subjected to axial compression and thermal loading", Ocean Eng., 225, 108601. https://doi.org/10.1016/j.oceaneng.2021.108601.
  24. Jiang, J., Ye, M., Chen, L.Y., Zhu, Z.W. and Wu, M. (2023), "Study on static strength of Q690 built-up K-joints under axial loads", Structures, 51, 760-775. https://doi.org/10.1016/j.istruc.2023.03.034.
  25. Jiao, P., Chen, Z., Ma, H., Ge, P., Gu, Y. and Miao, H. (2021), "Buckling behaviors of thin-walled cylindrical shells under localized axial compression loads, Part 1: Experimental study", Thin-Wall. Struct., 166, 108118. https://doi.org/10.1016/j.tws.2021.108118.
  26. Jiao, P., Chen, Z., Xu, F., Tang, X. and Su, W. (2018), "Effects of ringed stiffener on the buckling behavior of cylindrical shells with cutout under axial compression: Experimental and numerical investigation", Thin-Wall. Struct., 123, 232-243. https://doi.org/10.1016/j.tws.2017.11.013.
  27. Khadimallah, M.A., Hussain, M., Khedher, K.M., Naeem, M.N. and Tounsi, A. (2020), "Backward and forward rotating of FG ring support cylindrical shells", Steel Compos. Struct., 37(2), 137-150. https://doi.org/10.12989/scs.2020.37.2.137.
  28. Koiter, W.T. (1945), "On the stability of elastic equilibrium", Ph.D. Dissertation, Delft, Holland: Delft Institute of Technology.
  29. Koiter, W.T. (1963), "The effect of axisymmetric imperfections on the buckling of cylindrical shells under axial compression", Proceedings, Kon. Ned. Ak. Wet., 1963. 66 265-279.
  30. Lam, D. and Gardner, L. (2008), "Structural design of stainless steel concrete filled columns", J. Construct. Steel Res., 64(11), 1275-1282. https://doi.org/10.1016/j.jcsr.2008.04.012
  31. Lawrence, K.L. (2010), Ansys Tutorial Release 12.1, SDC Publications
  32. Liu, F., Gong, J.-G., Chen, H. and Xuan, F.-Z. (2021), "A direct approach to progressive buckling design considering ratcheting deformation", Thin-Wall. Struct., 163, 107656. https://doi.org/10.1016/j.tws.2021.107656.
  33. Liu, F., Niu, T., Gong, J.-G., Chen, H. and Xuan, F.-Z. (2023), "Experimental and numerical investigations on buckling behaviours of axially compressed cylindrical-conical-cylindrical shells at elevated temperature", Thin-Wall. Struct., 184, 110549. https://doi.org/10.1016/j.tws.2023.110549.
  34. Liu, C., Peng, Z., Cui, J., Huang, X., Li, Y. and Chen, W. (2023), "Development of crack and damage in shield tunnel lining under seismic loading: Refined 3D finite element modeling and analyses", Thin-Wall. Struct., 185, 110647. https://doi.org/10.1016/j.tws.2023.110647.
  35. Lorenz, R. (1908), "Achsensymmetrische verzerrungen in dunnwandigen hohlzylindern", Zeitschrift des Vereines Deutscher Ingenieure. 52(43), 1706-1713.
  36. Ma, H., Jiao, P., Li, H., Cheng, Z. and Chen, Z. (2023), "Buckling analyses of thin-walled cylindrical shells subjected to multiregion localized axial compression: Experimental and numerical study", Thin-Wall. Struct., 183, 110330.
  37. Ma, X., Hao, P., Wang, F. and Wang, B. (2020), "Incomplete reduced stiffness method for imperfection sensitivity of cylindrical shells", Thin-Wall. Struct., 157, 107148. https://doi.org/10.1016/j.tws.2020.107148.
  38. Moradi, A., Poorveis, D. and Khajehdezfuly, A. (2022), "Buckling of FGM elliptical cylindrical shell under follower lateral pressure", Steel Compos. Struct., 45(2), 175-191. https://doi.org/10.12989/scs.2022.45.2.175.
  39. Prabu, B., Raviprakash, A.V. and Venkatraman, A. (2010), "Parametric study on buckling behaviour of dented short carbon steel cylindrical shell subjected to uniform axial compression", Thin-Wall. Struct., 48(8), 639-649. https://doi.org/10.1016/j.tws.2010.02.009.
  40. Real, E., Arrayago, I., Mirambell, E. and Westeel, R. (2014), "Comparative study of analytical expressions for the modelling of stainless steel behaviour", Thin-Wall. Struct., 83, 2-11. https://doi.org/10.1016/j.tws.2014.01.026
  41. Rasmussen, K.J. (2003), "Full-range stress-strain curves for stainless steel alloys", J. Construct. Steel Res., 59(1), 47-61. https://doi.org/10.1016/S0143-974X(02)00018-4
  42. Rotter, J.M (2003) "Cylindrical shells under axial compression" Chapter 2 of the book Buckling of Thin Metal Structures, edited by JG Teng and JM Rotter, Spon, London, 42-87.
  43. Rotter, J.M. (2011), "Shell buckling design and assessment and the LBA-MNA methodology", Stahlbau. 80(11), 791-803. https://doi.org/10.1002/stab.201101491
  44. Seide, P., Weingarten, V.I. and Morgan, E.J. (1960), The Development of Design Criteria for Elastic Stability of Thin Shell Structures, TRW Space Technology Labs Los Angeles CA
  45. Shokrollahi, H. (2018), "Deformation and stress analysis of a sandwich cylindrical shell using HDQ Method", Steel Compos. Struct., 27(1), 35-48. https://doi.org/10.12989/scs.2018.27.1.035.
  46. Sonat, C., Topkaya, C. and Rotter, J.M. (2015), "Buckling of cylindrical metal shells on discretely supported ring beams", Thin-Wall. Struct., 93, 22-35. https://doi.org/10.1016/j.tws.2015.03.003.
  47. Southwell, R.V. (1914), "V. On the general theory of elastic stability", Philosoph. Transact. Royal Soc. London. Series A, Containing Papers Mathem. Phys. Character, 213(497-508), 187-244.
  48. Stranghoner, N., Azizi, E. and Gorbachov, A. (2019), "Influence of material nonlinearity on the buckling resistance of stainless steel shells", J. Construct. Steel Res., 157, 386-396. https://doi.org/10.1016/j.jcsr.2019.02.030
  49. Taheri-Behrooz, F. and Omidi, M. (2018), "Buckling of axially compressed composite cylinders with geometric imperfections", Steel Compos. Struct., 29(4), 557-567. https://doi.org/10.12989/scs.2018.29.4.557.
  50. Tian, K., Wang, B., Hao, P. and Waas, A.M. (2018), "A highfidelity approximate model for determining lower-bound buckling loads for stiffened shells", Int. J. Solids Struct., 148, 14-23. https://doi.org/10.1016/j.ijsolstr.2017.10.034.
  51. Tian, L., Li, M., Li, L., Li, D. and Bai, C. (2023), "Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios", Thin-Wall. Struct., 182, 110219. https://doi.org/10.1016/j.tws.2022.110219.
  52. Tian, L., Jin, B. and Li, L. (2023), "Axial compressive mechanical behaviors of a double-layer member", J. Struct. Eng., 149(8), 4023110. https://doi.org/10.1061/JSENDH.STENG-12175.
  53. Timoshenko, S.P. (1910), "Einige stabilitatsprobleme der elastizitatstheorie", Zeitschrift fur Mathematik und Physik. 58(4), 337-385.
  54. Wei, J., Xie, Z., Zhang, W., Luo, X., Yang, Y. and Chen, B. (2021), "Experimental study on circular steel tube-confined reinforced UHPC columns under axial loading", Eng. Struct., 230, 111599. https://doi.org/10.1016/j.engstruct.2020.111599.
  55. Weingarten, V.I., Morgan, E.J. and Seide, P. (1964), "Design criteria for the elastic stability of thin-walled cylindrical and conical shells under axial compression", Northrop Norair, NB. 64-125.
  56. Wu, Z., Huang, B., Fan, J. and Chen, H. (2023), "Homotopy based stochastic finite element model updating with correlated static measurement data", Measurement, 210, 112512. https://doi.org/10.1016/j.measurement.2023.112512.
  57. Wullschleger, L. and Meyer-Piening, H.R. (2002), "Buckling of geometrically imperfect cylindrical shells-definition of a buckling load", Int. J. Non-Linear Mech., 37(4-5), 645-657. https://doi.org/10.1016/S0020-7462(01)00089-0.
  58. Yadav, K.K., Cuccia, N.L., Virot, E., Rubinstein, S.M. and Gerasimidis, S. (2021), "A nondestructive technique for the evaluation of thin cylindrical shells' axial buckling capacity", J. Appl. Mech., 88(5). https://doi.org/10.1115/1.4049806.
  59. Yang, H., Hu, J., Xu, L. and Lu, G. (2016), "Peripheral deformation and buckling of stainless steel hemispherical shells compressed by a flat plate", Latin Amer. J. Solids Struct., 13, 257-271. https://doi.org/10.1590/1679-78252434.
  60. Yang, Y., Lin, B. and Zhang, W. (2023), "Experimental and numerical investigation of an arch-beam joint for an arch bridge", Arch. Civil Mech. Eng., 23(2), 101. https://doi.org/10.1007/s43452-023-00645-3.
  61. Yilmaz, H., Kocabas, I. and Ozyurt, E. (2017), "Empirical equations to estimate non-linear collapse of medium-length cylindrical shells with circular cutouts", Thin-Wall. Struct., 119, 868-878. https://doi.org/10.1016/j.tws.2017.08.008.
  62. Zeybek, O. and Ozkilic, Y.O. (2023), "Effects of reinforcing steel tanks with intermediate ring stiffeners on wind buckling during construction", J. Construct. Steel Res., 203, 107832. https://doi.org/10.1016/j.jcsr.2023.107832.
  63. Zeybek, O. and Topkaya, C. (2022), "Stiffness requirements for wind girders in open-top cylindrical steel tanks", Thin-Wall. Struct., 176, 109353. https://doi.org/10.1016/j.tws.2022.109353.
  64. Zhai, S., Lyu, Y., Cao, K., Li, G., Wang, W. and Chen, C. (2023), "Seismic behavior of an innovative bolted connection with dualslot hole for modular steel buildings", Eng. Struct., 279, 115619. https://doi.org/10.1016/j.engstruct.2023.115619.
  65. Zhao, O., Gardner, L. and Young, B. (2016), "Structural performance of stainless steel circular hollow sections under combined axial load and bending-Part 1: Experiments and numerical modelling", Thin-Wall. Struct., 101, 231-239. https://doi.org/10.1016/j.tws.2015.12.003
  66. Zhao, D., Jiang, C. and Zhao, K. (2023), "Ultrasonic welding of AZ31B magnesium alloy and pure copper: microstructure, mechanical properties and finite element analysis", J. Mater. Res. Technol., 23, 1273-1284. https://doi.org/10.1016/j.jmrt.2023.01.095
  67. Zhu, H., Su, J., Yang, F., Wu, Y., Ye, J., Huang, K. and Yang, Y. (2023), "Effect of lossy thin-walled cylindrical food containers on microwave heating performance", J. Food Eng., 337, 111232.
  68. Zhu, Z.Y., Liu, Y. L., Gou, G. Q., Gao, W. and Chen, J. (2021), "Effect of heat input on interfacial characterization of the butter joint of hot-rolling CP-Ti/Q235 bimetallic sheets by Laser+CMT", Sci. Rep., 11(1), 10020. https://doi.org/10.1038/s41598-021-89343-9.
  69. Zoelly, R. (1915), Ueber ein Knickungsproblem an der Kugelschale, Buchdr. Zurcher & Furrer