• Title/Summary/Keyword: carbon residue

Search Result 173, Processing Time 0.022 seconds

A binder system for low carbon residue and debinding behaviors in injection molding of NdFeB powder (NbFeB 분말사출성형에소 저잔류탄소를 위한 결합제 및 탈지거동)

  • 최준환
    • Journal of Powder Materials
    • /
    • v.6 no.2
    • /
    • pp.132-138
    • /
    • 1999
  • A new binder system and debinding process for low carbon residue in the injection molding of Nd(Fe, Co)B powder are investigated. In the injection molding of magnetic materials, it is demanded to reduce carbon residue which deteriorates their magnetic properties. The binder system developed is composed of polyethylene glycols (PEGs) and polypropylene (PP). PEG was selected as a major binder is component to be extracted in a molecular state by solvent extraction in ethanol, which step would leave no residue. PP was selected as a minor binder component to be subsequently removed by thermolysis which step would leave carbon residue. The behaviors of solvent extraction with the variations of PEG molecular weight, temperature, and time were examined. The dependency of residual carbon content on thermolysis atmosphere was also studied. Opened pore channels introduced in a green body by the solvent extraction and microstructures of the sintered magnets were observed using SEM.

  • PDF

Properties of Residue Compounds Obtained from H2SO4-Carbon Fiber Intercalated Compound (황산-탄소섬유 층간화합물에서 얻은 잔류화합물의 특성)

  • 김인기;최상흘;고영신
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.12
    • /
    • pp.1080-1088
    • /
    • 1993
  • The residue compounds of sulfuric acid-carbon fiber system were obtained from P100, M40, TZ307, and T300 fibers. The fibers which easily formed intercalation compound had small change of d002 value, but, large change of diameter of fiber. It was considered that the cracks in carbon fiber were due to the this conflicting result. The resistivities of residue compound of carbon fibers were increased with the large change of diameter of fibers. It is thought that the reason of our results is increasing defects such as crack in fibers. From the UV reflection spectra, it was found that reflectances of residue compounds were all decreased and the residue compounds were more stable than intercalation compounds.

  • PDF

Manufacture of Activated Carbon based on Solid Residue after Lignin Pyrolysis (리그닌 열분해 잔류고형물을 원료로 한 활성탄의 제조)

  • Lee, Jong-Jib;Yoon, Sung-Wook;Lee, Byung-Hak
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.133-139
    • /
    • 2000
  • In this study, activated carbon was prepared from solid residue after lignin pyrolysis by using zinc chloride as an activation agent. The steam activation method was adopted to manufacture activated carbon from solid residue after lignin pyrolysis. The effect of process operation variables such as activation temperature, activation time and mass of activation agent added to char on the pore structure and specific surface area of the activated carbon was investigated. Activated carbon with high surface area and well-developed pore structure could be prepared, when solid residue after lignin pyrolysis was mixed with zinc chloride of 300 wt% and then the mixture was activated for 1 hour at $1000^{\circ}C$ in a stream of nitrogen.

  • PDF

Investigation of thorium separation from rare-earth extraction residue via electrosorption with carbon based electrode toward reducing waste volume

  • Aziman, Eli Syafiqah;Ismail, Aznan Fazli;Muttalib, Nabilla Abdul;Hanifah, Muhammad Syafiq
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2926-2936
    • /
    • 2021
  • Rare-earth (RE) industries generate a massive amount of radioactive residue containing high thorium concentrations. Due to the fact that thorium is considered a non-economic element, large volume of these RE processed residues are commonly disposed of without treatment. It is essential to study an appropriate treatment that could reduce the volume of waste for final disposition. To this end, this research investigates the applicability of carbon-based adsorbent in separating thorium from aqueous phase sulphate is obtained from the cracking and leaching process of solid rare-earth by-product residue. Adsorption of thorium from the aqueous phase sulphate by carbon-based electrodes was investigated through electrosorption experiments conducted at a duration of 180 minutes with a positive potential variable range of +0.2V to +0.6V (vs. Ag/AgCl). Through this research, the specific capacity obtained was equivalent to 1.0 to 5.14 mg-Th/g-Carbon. Furthermore, electrosorption of thorium ions from aqueous phase sulphate is found to be most favorable at a higher positive potential of +0.6V (vs. Ag/AgCl). This study's findings elucidate the removal of thorium from the rare-earth residue by carbon-based electrodes and simultaneously its potential to reduce disposal waste of untreated residue.

DEVELOPMENT OF ADSORBENT USING BYPRODUCTS FROM KOREAN MEDICINE FOR REMOVING HEAVY METALS

  • Kim, S.W.;Lim, J.L.
    • Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • Most of the herb residue producing from oriental medical clinics(OMC) and hospitals(OMH) is wasted in Korea. To develop of adsorbent for removing heavy metal from wastewater, the various pre-treatment methods of the herb residue were evaluated by potentiometric titration, Freundlich isotherm adsorption test and the kinetic adsorption test. The herb residue was pre-treated for increasing the adsorption capacity by cleaning with distilled water, 0.1 N HCl and 0.1 N NaOH and by heating at $370^{\circ}C$ for 30 min. It showed a typical weak acid-weak base titration curve and a short pH break like commercial activated carbon during photentiometric titration of pre-treated herb residue. The log-log plots in the Freundlich isotherm test were linear on the herb residue pre-treated with NaOH or HCl like commercial activated carbon. The adsorption capacity(qe) in the Freundlich isotherm test for $Cr^{6+}$ was 1.5 times higher in the pre-treated herb residue with HCl than in activated carbon. On the other hand the herb residue pre-treated with NaOH showed the good adsorption capacities for $Pb^{2+}$, $Cu^{2+}$ and $Cd^{2+}$ even though those adsorption capacities were lower than that of activated carbon. In kinetic test, most of heavy metals removed within the first 10 min of contact and then approached to equilibrium with increasing contact time. The removal rate of heavy metals increased with an increase of the amount of adsorbent. Likewise, the removal rates of heavy metals were higher in the herb residue pre-treated with NaOH than in that pre-treated with HCl. The adsorption preference of herb residues pre-treated with NaOH or HCl was $Pb^{2+}>Cu^{2+}$ or $Cd^{2+}>Cr^{6+}$ in the order. Conclusively, the herb residue can be used as an alternative adsorbent for the removal of heavy metals depending on pr-treatment methods.

Preparation of Anode Material for Lithium Secondary Battery using Pitch-coated Graphite Residue Compounds

  • Ko, Young-Shin;Oh, Won-Chun
    • Carbon letters
    • /
    • v.8 no.3
    • /
    • pp.207-213
    • /
    • 2007
  • The properties and electrochemical characteristics of anode material using pitch-coated graphite residue compounds by heat-treatment at $600^{\circ}C$ for 1 hour were investigated. The distance of layers of pitch-coated graphite residual compounds was 3.3539 ${\AA}$, which was as same as that of graphite. Its electrochemical and charge discharge characteristics were tested according to different four types of carbon material, natural graphite, pitch-coated graphite, amorphous graphite and pitch-coated graphite residual compounds, respectively. So it was shown the best charge-discharge characteristics in all of the samples. For the electrochemical and charge-discharge characteristics, although pitch-coated graphite residual compounds had different carbon contents 70% and 80%, these two samples were shown good electrochemical and charge-discharge characteristics.

Catalytic hydrogenation-assisted preparation of melt spinnable pitches from petroleum residue for making mesophase pitch based carbon fibers

  • Lee, Dong Hun;Choi, Jisu;Oh, Young Se;Kim, Yoong Ahm;Yang, Kap Seung;Ryu, Ho Jin;Kim, Yong Jung
    • Carbon letters
    • /
    • v.24
    • /
    • pp.28-35
    • /
    • 2017
  • We demonstrated an effective way of preparing melt spinnable mesophase pitches via catalytic hydrogenation of petroleum residue (fluidized catalytic cracking-decant oil) and their subsequent thermal soaking. The mesophase pitches thus obtained were analyzed in terms of their viscosity, elemental composition, solubility, molecular weight, softening point and optical texture. We found that zeolite-induced catalytic hydrogenation under high hydrogen pressure contributed to a large variation in the properties of the pitches. As the hydrogen pressure increased, the C/H ratio decreased, and the solubility in n-hexane increased. The mesophase pitch with entirely anisotropic domains of flow texture exhibited good meltspinnability. The mesophase carbon fibers obtained from the catalytically hydrogenated petroleum residue showed moderate mechanical properties.

Pitch based carbon fibers for automotive body and electrodes

  • Yang, Kap Seung;Kim, Bo-Hye;Yoon, Seong-Ho
    • Carbon letters
    • /
    • v.15 no.3
    • /
    • pp.162-170
    • /
    • 2014
  • Pitch is an attractive raw material for carbon fiber precursors due to its low cost stemming from its availability as a residue of coking and petroleum processes. Ford Motor Company reported a carbon fiber target price of $11.0/kg by using a fast cycle-time manufacturing method with carbon fiber in an inexpensive format, allowing for an average retail price of gasoline of $3.58/gallon. They also recommended the use of carbon fiber with strength of 1700 MPa, modulus of 170 GPa, and 1.5% elongation. This study introduced a ca. $5.5{\mu}m$ carbon fiber with 2000 MPa tensile strength obtained from a precursor through simple distillation of petroleum residue. Petroleum pitch based carbon nanofibers prepared via electrospinning were characterized and potential applications were introduced on the basis of their large specific surface area and relatively high electrical conductivity.

A Study on the Pore Structure Control with Heat Treatment Conditions of Waste Tire Carbon Residue (폐(廢)타이어 탄소잔류물(炭素殘留物)의 열처리(熱處理) 조건(條件)에 따른 카본 기공특성(氣孔特性) 연구(硏究))

  • Won, JiYeon;Lee, Yoon Joo;Kim, Jong Il;Kim, Younghee;Kim, Soo Ryong;Lee, Hyun Jae;Ko, Tae Gyung;Lee, MiJai;Kwon, Woo Teck
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.11-17
    • /
    • 2013
  • The recycling technology of carbon residue produced from the process of oil recovery in waste tire pyrolysis is significant in environmental and economical aspects. This study was done to figure out the recycling possibility of carbon residue to activated carbon. For this, the characteristics of the carbon residue obtained from the commercial pyrolysis process of waste tire were studied. Also, the variation of pore structure of carbon residue was studied after 1 hour of carbonization at $600^{\circ}C$ and $800^{\circ}C$ and 3 hours of activation at $950^{\circ}C$. The specific surface area of the carbon residue was $8.0m^2/g$ and it increased to $548.3m^2/g$ after carbonization and activation.

Influence of carbonized crop residue on soil carbon storage in red pepper field

  • Lee, Jae-Ho;Eom, Ji-Young;Jeong, Seok-hee;Hong, Seung-Bum;Park, Eun-Jin;Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.41 no.12
    • /
    • pp.336-344
    • /
    • 2017
  • Background: Because of climate change, interest in the development of carbon pools has increased. In agricultural ecosystems, which can be more intensively managed than forests, measures to control carbon dioxide ($CO_2$) emission and absorption levels can be applied relatively easily. However, crop residues may be released into the atmosphere by decomposition or combustion. If we can develop scientific management techniques that enable these residues to be stocked on farmland, then it would be possible to convert farmlands from carbon emission sources to carbon pools. We analyzed and investigated soil respiration (Rs) rate characteristics according to input of carbonized residue of red peppers (Capsicum annuum L.), a widely grown crop in Korea, as a technique for increasing farmland carbon stock. Results: Rs rate in the carbonized biomass (CB) section was $226.7mg\;CO_2\;m^{-2}h^{-1}$, which was 18.1% lower than the $276.9mg\;CO_2\;m^{-2}h^{-1}$ from the red pepper residue biomass (RB) section. The Rs rate of the control was $184.1mg\;CO_2\;m^{-2}h^{-1}$. In the following year, Rs in the CB section was $204.0mg\;CO_2\;m{-2}h^{-1}$, which was 38.2% lower than the $330.1mg\;CO_2\;m^{-2}h^{-1}$ from the RB section; the control emitted $198.6mg\;CO_2\;m^{-2}h^{-1}$. Correlation between Rs and soil temperature ((Ts) at a depth of 5 cm) was $R^2=0.51$ in the RB section, which was higher than the other experimental sections. A comparison of annual decomposition rates between RB and CB showed a large difference, 41.4 and 9.7%, respectively. The results showed that carbonization of red pepper residues reduced the rates of decomposition and Rs. Conclusions: The present study confirmed that the Rs rate can be reduced by carbonization of residue biomass and putting it in the soil and that the Rs rate and Ts (5 cm) were positively correlated. Based on the results, it was determined that approximately $1.2t\;C\;ha^{-1}$ were sequestered in the soil in the first year and $3.0t\;C\;ha^{-1}$ were stored the following year. Therefore, approximately $1.5t\;C\;ha^{-1}year^{-1}$ are expected to be stocked in the soil, making it possible to develop farmlands into carbon pools.